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Abstract

Prediction problems such as image segmentation, sentence parsing, and gene prediction
involve complex output spaces for which multiple decisions must be coordinated to achieve
optimal results. Unfortunately, this means that there are generally an exponential number of
possible predictions for every input. Markov random fields can be used to express structure
in these output spaces, reducing the number of model parameters to a manageable size;
however, the problem of learning those parameters from a training sample remains NP-hard
in general. We review some recent results on approximate learning of structured prediction
problems. There are two distinct approaches. In the first, results from the well-studied
field of approximate inference are adapted to the learning setting. In the second, learning
performance is characterized directly, producing bounds even when the underlying inference
method does not offer formal approximation guarantees. While the literature on this topic
is still sparse, we review the strengths and weaknesses of current results, and discuss issues
that remain for future work.
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Chapter 1

Introduction

Standard prediction problems involve making simple, independent decisions, such as deter-
mining whether or not a given e-mail message is spam. Many real-world prediction problems,
however, involve complex output spaces for which decisions should or must be coordinated
to achieve optimal results. Given an image, for example, it may be difficult to indepen-
dently determine whether each pixel belongs to an object of interest, but if we encourage
consistency among neighboring pixels we can expect to do better given that objects tend
to be spatially continuous. Similarly, the part-of-speech of the word “green” is ambiguous
in general, but given that the following word is a noun we can surmise that “green” is
probably an adjective. Thus, knowledge about the structure of the output space, defined
as the pattern of interactions between individual decisions, can contribute significantly to
improved prediction performance. In fact, for some problems output space structure can be
mandatory. For example, in natural language parsing the task is often reduced to a set of
binary output variables. The values predicted for these variables must be coordinated to
ensure that, taken together, they describe a valid parse tree. If they do not, the prediction
is effectively nonsensical.

Unfortunately, the introduction of structure typically involves a combinatorial explosion
of output possibilities. Naively, we need to consider the complete cross-product of decisions
(e.g., all combinations of part-of-speech tags for all words in a sentence) in order to make an
optimal prediction. Of course doing so requires exponential time and is generally intractable.
As a compromise, we can limit the sort of structure that we allow. A popular approach is to
permit only local structure: we build a graph in which individual decisions are represented by
nodes, and use a sparse set of edges to indicate the presence of interactions between them.
This is the basic form of the Markov Random Field (MRF), which we define formally in
Chapter 2 and use as our structure representation throughout.

We are interested in learning structured models; that is, our goal is to fit parameters
of the model using a training sample so that, at test time, we achieve good prediction
performance. In this context, the downside of limiting structure is that the model can
become less expressive: there may be interactions that would improve our ability to find
good parameters but cannot be included due to computational constraints. Thus the primary
challenge of introducing structure into learning is to balance effectively between tractability
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and expressivity. (There is a third consideration, namely generalization ability, that we
do not consider here, although it can be significant in some cases [11].) At one extreme,
we can ignore structure and make each decision independently; this approach is fast but
potentially suboptimal. At the other end, we can explicitly model every possible combination
of decisions, achieving maximum flexibility but with little hope for efficiency.

Local MRFs form a middle ground; however, even there, the tradeoff can be important.
Tree-shaped MRFs, for example, can be learned exactly in polynomial time, but the learning
task for general MRFs with cycles is NP-hard. Nonetheless, since tree-shaped MRFs are not
generally adequate for tasks such as image segmentation, we seek bounds on the performance
of efficient but approximate learning schemes. Such schemes are used widely in practice
[13, 12, 7], are likely to be of continued value as the availability of complex data grows faster
than humans experts can build models manually. We would therefore like to understand the
structural conditions under which we can provably achieve useful learning results.

While relatively few results of this type are known, we discuss here two general ap-
proaches. In the first, the idea is to leverage the existing work on approximations for the
task of inference, or making predictions given fixed model parameters. Since learning uses in-
ference as a subroutine, it can be shown that under certain conditions formal approximation
of the inference problem leads to learning bounds. In the second approach, the performance
of a learning scheme is characterized directly, even though the underlying inference algorithm
does not offer formal approximation guarantees.

We proceed by defining our notation and the basic structured learning problem in Chap-
ter 2. We discuss some recent results on inference approximations in Chapter 3, and show
how they can be turned into bounds on learning performance in Chapter 4. We present the
second main result on learning for denoising problems in Chapter 5, and finally conclude
in Chapter 6 with a discussion of the larger principles illustrated by the results, as well as
challenges for future work.
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Chapter 2

Learning structured models

The basic supervised learning problem is as follows. We receive a training sample S =
{(x(t), y(t))}Nt=1 drawn independently from a distribution D over pairs (x, y) ∈ X ×Y , where
X is an input space and Y is the associated output or label space. We are also given a loss
function ` : Y×Y → R, where `(y′, y) is the loss incurred predicting y′ when the true output
is y. For example, we might have an input space consisting of e-mail messages and a label
set with the elements “spam” and “not spam”. The loss function can be used to specify that
it is worse to label a valid message as spam than to label a spam message as valid. The goal
of learning is to choose, based on the training sample, a hypothesis h : X → Y such that the
test time risk ED[`(h(x), y)] is minimized.

Structured learning problems are those for which the output space Y is complex, con-
sisting of multiple related decisions. For concreteness, we will assume Y = Kn with K =
{1, . . . , k}; that is, there are n outputs, each of which must be assigned a label from 1 to k.
For example, we may wish to decide whether or not each pixel in an image participates in
the depiction of a certain object (k = 2), or assign a part-of-speech label to each word in a
sentence (k = 45 for the Penn Treebank tag set). We use bold variables to denote vectors, so
x ∈ X is the input (generally vectorial for structured problems, though this is not critical)
and y = (y1, y2, . . . , yn) ∈ Y is the vector of labels. We assume use of the Hamming loss
`(y′,y) =

∑n
i=1 I(y′i 6= yi), which simply counts the number of mislabeled outputs.

The primary challenge of structured learning is to cope with the combinatorial nature of
Y . Note that in general, the output space Y may consist of more complex structures like
trees or strings. It may also depend on the input x; for example, the number of part-of-
speech tags to be assigned depends on the length of the sentence. However, we keep the
setting above for simplicity. The results presented here extend naturally to other structured
settings.

There are several immediate reductions to the non-structured case. First, we can treat
each decision independently, mapping (x,y) to (x, yi) and applying standard methods for
predicting yi from x. By doing this n times, once per output, we can predict the entire
vector y. However, we cannot take into account interactions among the outputs, which can
be highly informative or even required if the decisions must be coordinated in order to make
sense. Alternatively, we can think of the entire vector y as a single decision taking labels
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from a set of size kn, and again apply standard methods. While this is quite general, we
are interested in cases where kn is too large to fully enumerate all of the label combinations.
Furthermore, the number of parameters will scale with kn, making generalization difficult or
impossible.

We therefore seek methods for learning that directly account for output space structure
in order to be both efficient and expressive.

2.1 Markov random fields

We focus on the learning of Markov Random Fields (MRFs), also known as Markov networks,
which offer a flexible and intuitive means of representing output structure. An MRF is an
undirected graphical model defined by a graph G = (V,E) where the nodes V = {1, 2, . . . , n}
represent output variables Y = {Y1, Y2, · · · , Yn}. As above, each output takes a value from
the label set K, and we use yi to denote an assignment to Yi. We use bold yc to denote an
assignment to a set of variables Yc, and y for an assignment to all output variables. The
graph edges E encode direct dependence relationships between variables; for example, there
might be edges between neighboring pixels or adjacent words.

An MRF defines a joint probability distribution over the output variables that factorizes
across the cliques C of G:

P (y) =
1

Z

∏
c∈C

ψc(yc). (2.1)

Here each ψc is a potential function that assigns a non-negative value to every possible
assignment yc of the clique c, and Z is the normalization constant

∑
y′
∏

c∈C ψc(y
′
c).

The Hammersley-Clifford theorem states that P (y) defined as above is always Markov
with respect to G; that is, each variable Yi is conditionally independent of all other variables
given its neighbors in G. The converse also holds: any distribution that is Markov with
respect to G, as long as it is strictly positive, can be decomposed over the cliques of G
as in Equation (2.1) [3]. MRFs therefore offer an intuitive way to model structure. Given
domain knowledge about the nature of the ways in which outputs interact, a practitioner can
construct a graph that encodes a precise set of conditional independence relations, reducing
the modeling problem to one of choosing appropriate potential functions ψc for each clique
in that graph. (Because a clique c has k|c| unique assignments, computational constraints
generally limit us to small cliques.) We will look at ways in which structured learning can be
used to automatically estimate these potentials. (Note that structure learning is the process
of automatically choosing the graph itself, which we do not consider here.)

For simplicity, we will focus on pairwise MRFs, where the largest cliques with interesting
potential functions are the edges; that is, ψc(yc) = 1 for all cliques c where |c| > 2. The
pairwise distribution is

P (y) =
1

Z

∏
i∈V

ψi(yi)
∏
ij∈E

ψij(yi, yj). (2.2)

We refer to ψi(yi) as node potentials, and ψij(yi, yj) as edge potentials.
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2.1.1 Conditional parameterization

In order to use MRFs for our learning task and predict different outputs y for different
inputs x, we need our potential functions to depend on x. This leads us to a conditional
MRF. Equation (2.2) becomes

P (y|x) =
1

Z(x)

∏
i∈V

ψi(yi|x)
∏
ij∈E

ψij(yi, yj|x). (2.3)

Note that the normalization term Z(x) now depends on the input x. The value of ψi(yi|x)
can be seen as a measure of the compatibility between the label yi and the input x. Similarly,
ψij(yi, yj|x) is a measure of the three-way compatibility between yi, yj, and x.

In order to learn the potential functions effectively, we need to parameterize them in some
way. (While we could attempt to directly learn values of ψi(yi|x) and ψij(yi, yj|x) for every
possible x, yi, and yj, this approach is not feasible in general due to the large number of
possible inputs x.) We therefore adopt a log-linear feature-based parameterization in which
ψi(yi|x) = exp(w · f i(yi|x)) and ψij(yi, yj|x) = exp(w · f ij(yi, yj|x)) for a weight vector w
and fixed feature representations f i(yi|x) and f ij(yi, yj|x), all elements of Rd. We call the
elements of f i(yi|x) node features, and the elements of f ij(yi, yj|x) edge features.

The feature representations are fixed in advance by the practitioner; for learning to
be effective, they should contain information thought to be relevant to the compatibility
amongst labels and between labels and input. For example, there might be an edge feature
that is 1 whenever two neighboring pixels have the same label (and zero otherwise). Or there
might be a node feature for each part-of-speech tag that can be assigned to each word.

The set of MRFs that can be encoded with this parameterization form an exponential
family:

Pw(y|x) =
1

Z(w,x)

∏
i∈V

exp (w · f i(yi|x))
∏
ij∈E

exp
(
w · f ij(yi, yj|x)

)
=

1

Z(w,x)
exp (w · f(y|x)) ,

(2.4)

where f(y|x) =
∑

i∈V f i(yi|x)+
∑

ij∈E f ij(yi, yj|x) is the global feature function. Note that
the normalization term now depends on both w and x.

2.2 Learning

Learning entails choosing the parameters w of the MRF model based on a training sample
S = {(x(t),y(t))}Nt=1. We outline two basic approaches.
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2.2.1 Maximum likelihood

Since the MRF is probabilistic, we can choose parameters w to maximize the conditional
log-likelihood of the observed data:

L(w, S) = log
N∏
t=1

Pw(y(t)|x(t))

=
N∑
t=1

logPw(y(t)|x(t))

=
N∑
t=1

[
w · f(y(t)|x(t))− logZ(w,x(t))

]
= w ·

[
N∑
t=1

f(y(t)|x(t))

]
−

N∑
t=1

logZ(w,x(t))

(2.5)

This approach has the advantage of calibrating the MRF to produce reasonable probability
estimates, but it ignores the loss function ` and may not produce optimal performance. (It
can be thought of as optimizing the logistic loss instead.)

To optimize the log-likelihood, we can use standard algorithms such as gradient descent
or L-BFGS [9]. However, each iteration requires computing the gradients of the normaliza-
tion terms Z(w,x(t)), which is NP-hard for general graphs G. Thus, we need to resort to
approximations, which we discuss later.

2.2.2 Maximum margin

An alternative approach is to largely ignore the probabilistic nature of the MRF, and instead
treat it simply as a scoring mechanism that assigns values w · f(y|x) to outputs y given
input x. While these scores are unnormalized, and thus cannot be treated as probabilities,
they are still adequate to choose the most likely output,

y∗(x;w) = arg max
y

Pw(y|x) = arg max
y

[w · f(y|x)]. (2.6)

y∗ is known as the maximum a posteriori (MAP) labeling.
In this context, we can try to find parameters w that maximize the loss-scaled margin

min
t

min
ŷ 6=y(t)

w · f(y(t)|x(t))−w · f(ŷ|x(t))

‖w‖`(ŷ,y(t))
. (2.7)

Intuitively, we try to ensure that the gap in score between the correct output y(t) and every
incorrect output ŷ is large compared to the loss `(ŷ,y(t)); that is, for “more wrong” outputs
we demand a larger gap.
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It is convenient to rewrite this margin maximization problem as a minimization over the
norm of w subject to constant margin constraints. The equivalent optimization is:

min
w

1

2
‖w‖2

s.t. w · f(y(t)|x(t)) ≥ w · f(ŷ|x(t)) + `(ŷ,y(t)) ∀ t, ŷ 6= y(t).
(2.8)

Since there are exponentially many outputs ŷ, this optimization has an intractable num-
ber of constraints. We simplify it by converting the exponential constraint set for each
example into a single nonlinear constraint:

min
w

1

2
‖w‖2

s.t. w · f(y(t)|x(t)) ≥ max
y∈Y

[
w · f(y|x(t)) + `(y,y(t))

]
∀ t.

(2.9)

Since `(y(t),y(t)) is defined to be zero, we do not need to exclude y(t) from the maximiza-
tion. The maximization sub-problem in Equation (2.9) is called the loss-augmented maxi-
mum (LAM). Naturally, it is intractable for general graphs. However, we will see ways of
approximating it for certain classes of MRFs.

Equation (2.9) is a convex problem and can be solved in various ways; we will see one
approach in Chapter 4.

2.3 Approximate learning

As suggested above, learning formulations for structured problems are generally NP-hard
to solve exactly. Hence, we seek bounds on the performance of efficient approximations. In
order to have a practical result, we concern ourselves with the quality of predictions obtained
from a learned model, rather than, for example, the degree to which we can approximate
the parameters w∗ that would be obtained by exact learning. (The parameters themselves
are of little consequence if we cannot make good predictions from them.) We can think of
an end-to-end learning scheme as consisting of two parts:

1. A learning algorithm for choosing parameters w based on supervised data.

2. A prediction or inference algorithm for predicting y given a new input x and learned
model parameters w.

Both tasks require approximation for general structured models, and in the following chapters
we will discuss some ways in which the two approximations can interact. We seek to bound
the risk gap; that is, the difference between the expected loss of predictions from an efficient
scheme and from exact, intractable methods.
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Chapter 3

Structured inference

Before getting to approximate structured learning results, we first discuss approximation
results for inference, the task of extracting predictions from a fixed model. In a learning
setting, inference is required at test time, after the parameters w have been learned, for
making predictions on unseen data. Thus inference is an important part of an end-to-end
learning scheme. Furthermore, we will see that the intractable steps in learning algorithms
themselves can generally be expressed as inference; thus solving hard inference problems can
be seen as the central challenge of approximate learning.

Inference given fixed model parameters w is a relatively well-studied problem, and there
exist a number of approximate methods, including some with formal approximation guaran-
tees. In this section we review some recent results on using linear programming relaxations
to compute MAP solutions for certain classes of MRFs. These will turn out to be especially
useful in developing learning bounds.

3.1 MAP inference

We take as our canonical inference problem the computation of the maximum a posteri-
ori (MAP) labeling given an input x and parameters w. (We discuss the related task of
computing marginals in Chapter 5.) Recall that for pairwise MRFs the MAP labeling is

y∗(x;w) = arg max
y

P (y|x)

= arg max
y

logP (y|x)

= arg max
y

[w · f(y|x)],

(3.1)

where f(y|x) =
∑

i∈V f i(yi|x) +
∑

ij∈E f ij(yi, yj|x).
It is not obvious from Equation (3.1) how to optimize y other than iterating over all

(exponentially many) possible values. However, we can take advantage of the structure of
the MRF to rewrite Equation (3.1) as a compact integer linear program (ILP). We define a
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binary representation z of y as follows.

zi(r) = I(yi = r) ∀ i ∈ V, r ∈ K
zij(r, s) = I(yi = r ∧ yj = s) ∀ ij ∈ E, r, s ∈ K

(3.2)

Note that z is a vector of dimension nk+mk2 where m = |E|; we use functional notation as
a convenient way to refer to specific elements of this vector. There is a one-to-one mapping
between outputs y and representations z under the following conditions:∑

r

zi(r) = 1 ∀ i ∈ V∑
s

zij(r, s) = zi(r) ∀ ij ∈ E, r ∈ K

z ∈ {0, 1}(nk+mk2).

(3.3)

The first constraint ensures that each node receives exactly one label, and the second ensures
that the label pairs assigned to edges agree with the node labels. (Implicitly, each edge
appears twice: once as ij and once as ji.) The third constraint requires that z is binary.
The inference problem can now be written as

z∗(x;w) = arg max
z

∑
i∈V

∑
r∈K

zi(r)[w · f i(r|x)] +
∑
ij∈E

∑
r,s∈K

zij(r, s)[w · f ij(r, s|x)]

s.t.
∑
r

zi(r) = 1 ∀ i ∈ V∑
s

zij(r, s) = zi(r) ∀ ij ∈ E, r ∈ K

z ∈ {0, 1}(nk+mk2),

(3.4)

where z∗(x;w) denotes our binary representation of the MAP labeling.
Solving ILPs is NP-hard in general, so the inference formulation in Equation (3.4) is

not practical. The primary difficulty is the integrality constraint z ∈ {0, 1}(nk+mk2). We
can obtain a linear programming (LP) relaxation by replacing it with the box constraint
z ∈ [0, 1](nk+mk2):

ẑ(x;w) = arg max
z

∑
i∈V

∑
r∈K

zi(r)[w · f i(r|x)] +
∑
ij∈E

∑
r,s∈K

zij(r, s)[w · f ij(r, s|x)]

s.t.
∑
r

zi(r) = 1 ∀ i ∈ V∑
s

zij(r, s) = zi(r) ∀ ij ∈ E, r ∈ K

z ∈ [0, 1](nk+mk2),

(3.5)

where ẑ(x;w) is a possibly fractional representation. We can obtain ẑ(x;w) efficiently
using standard algorithms for solving LPs. ẑ(x;w) 6= z∗(x;w) in general, although the
equivalence holds for graphs G that are trees. However, we are interested here in structured
problems for which tree MRFs are insufficient.
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3.2 Associative MRFs

In this section we present approximation results for the LP relaxation in Equation (3.5) for
MRFs that are associative [13]. A MRF is called associative if the clique potentials are at
least 1 whenever the nodes in the clique share a common label, and exactly 1 otherwise.
Intuitively, the model always encourages nodes in the same clique to have the same label.
Formally, a pairwise MRF is associative whenever the objective of Equation (3.4) takes the
form ∑

i∈V

∑
r∈K

θi(r)zi(r) +
∑
ij∈E

∑
r∈K

θij(r, r)zij(r, r) (3.6)

where θi(r) ∈ R and θij(r, r) ≥ 0. For MRFs parameterized by joint feature vectors, asso-
ciativity is equivalent to

w · f ij(r, r|x) ≥ 0 ∀ ij ∈ E, r ∈ K
w · f ij(r, s|x) = 0 ∀ ij ∈ E, r 6= s.

(3.7)

Given these constraints, we can rewrite Equation (3.5) as

ẑ(x;w) = arg max
z

∑
i∈V

∑
r∈K

zi(r)[w · f i(r|x)] +
∑
ij∈E

∑
r∈K

zij(r, r)[w · f ij(r, r|x)]

s.t.
∑
r

zi(r) = 1 ∀ i ∈ V

zij(r, r) ≤ zi(r) ∀ ij ∈ E, r ∈ K
z ∈ [0, 1](nk+mk2),

(3.8)

where we have removed unnecessary variables zij(r, s) for r 6= s and replaced the agreement
constraint

∑
s zij(r, s) = zi(r) with zij(r, r) ≤ zj(r) using the fact that the objective coeffi-

cients on zij(r, r) are non-negative, ensuring that they always take their maximum feasible
values.

Theorem 1. For associative MRFs with k = 2, an optimum ẑ of Equation (3.8) is equal to
the optimum z∗ of Equation (3.4) (assuming we set ẑij(r, s) = min{ẑi(r), ẑj(s)} for r 6= s).

Proof. It suffices to show that ẑ is integral, since the constraints of Equation (3.8) form an
outer bound on those of Equation (3.4). (The two problems are equivalent except for the
integrality/box constraints.) Thus, if the optimum of Equation (3.8) is integral, it must also
be optimal for Equation (3.4).

Suppose that fractional ẑ is optimal for Equation (3.8). We construct ẑ′ with fewer
fractional elements that has equal or greater objective value. Let b be a binary vector
indicating whether each element of ẑ is fractional; that is, bi(r) = I(0 < ẑi(r) < 1) and
bij(r, r) = I(0 < ẑij(r, r) < 1). Consider ẑ′ defined as follows:

ẑ′i(1) = ẑi(1) + bi(1)C ẑ′ij(1, 1) = ẑij(1, 1) + bij(1, 1)C

ẑ′i(2) = ẑi(2)− bi(2)C ẑ′ij(2, 2) = ẑij(2, 2)− bij(2, 2)C,
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for some constant C.
Without loss of generality, we can assume that ẑij(r, r) = min{ẑi(r), ẑj(r)}, since its

objective coefficient is non-negative. Thus if any element of ẑ is fractional, some node
element must be fractional; that is, there exists i such that ẑi(1) and ẑi(2) are both positive.
We can therefore define positive λ1 = mini:ẑi(1)>0 ẑi(1) and λ2 = mini:ẑi(2)>0 ẑi(2). Letting
C = −λ1 or C = λ2 guarantees that 0 ≤ ẑ′i(r) ≤ 1 for all i, r. Since bi(1) = bi(2), we also
have that ẑ′i(1) + ẑ′i(2) = ẑi(1) + ẑi(2) = 1.

It remains to show that ẑ′ij(r, r) ≤ ẑ′i(r). If ẑij(r, r) = 0, then ẑ′ij(r, r) = 0 ≤ ẑ′i(r).
Otherwise, assume without loss of generality that 0 < ẑi(r) ≤ ẑj(r) for an edge ij. Then
bi(r) = bij(r, r), and we have ẑ′ij(1, 1) = ẑij(1, 1)+bij(1, 1)C ≤ ẑi(1)+bi(1)C = ẑ′i(1) ≤ ẑ′j(1),
and similarly for ẑ′ij(2, 2). Thus ẑ′ is feasible.

The difference in objective value between ẑ′ and ẑ is∑
i∈V

∑
r∈{1,2}

w · f i(r|x)(ẑ′i(r)− ẑi(r)) +
∑
ij∈E

∑
r∈{1,2}

w · f ij(r, r|x)(ẑ′ij(r, r)− ẑij(r, r))

= Cp

(3.9)

for some constant p. Since we can choose C = −λ1 < 0 or C = λ2 > 0, we can always find
ẑ′ such that Cp ≥ 0.

Since the output y is uniquely determined by the representation z, we have that for
associative binary MRFs we can efficiently obtain the MAP solution. For more general k,
we must consider the possibility that ẑ is fractional. In this case, we obtain the output ŷ
using the following rounding procedure:

• Begin with all outputs unassigned.

• While there exists an unassigned output:

– Choose a label r uniformly at random from K.

– Choose a threshold β uniformly at random from [0, 1].

– For each unassigned output i, set ŷi = r if ẑi(r) > β.

• Return ŷ.

Theorem 2. ŷ obtained by rounding ẑ(x;w) is a 2-approximation; that is, it has expected
score w · f(ŷ|x) ≥ 1

2
maxyw · f(y|x).

Proof. The theorem follows directly from the following two lemmas, given that the objective
value of ẑ(x;w) is always at least the objective value of z∗(x;w).

Lemma 1. The probability that ŷi = r is ẑi(r).
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Proof. On each iteration, ŷi is set to r with probability 1
k
ẑi(r). Since each iteration is

independent of the last, the probability that ŷi is eventually set to r is

1
k
ẑi(r)∑

r′
1
k
ẑi(r′)

= ẑi(r). (3.10)

Lemma 2. The probability that ŷi = r and ŷj = r is at least 1
2
ẑij(r, r).

Proof. If neither ŷi nor ŷj is assigned at the beginning of an iteration, the iteration sets them
both to r with probability p1 = 1

k
min{ẑi(r), ẑj(r)} = 1

k
ẑij(r, r). On the other hand, neither

ŷi nor ŷj is set during the iteration with probability p2 = 1− 1
k

∑
r′ max{ẑi(r′), ẑj(r′)}.

The probability that ŷi and ŷj are both eventually set to r is at least the probability that
they are both set to r on a single iteration after remaining unassigned though all previous
iterations. That probability is

∞∑
i=1

p1p
(i−1)
2 =

p1
1− p2

=
ẑij(r, r)∑

r′ max{ẑi(r′), ẑj(r′)}

≥ ẑij(r, r)∑
r′ [ẑi(r

′) + ẑj(r′)]
=

1

2
ẑij(r, r).

(3.11)

In general, the argument in Lemma 2 can be used to show an approximation ratio equal
to the size of the largest clique in G.

Theorem 1 and Theorem 2 are closely related to results for the metric labeling problem
[4, 2]. However, associative MRFs can express different affinities for different labels; that
is, w · f ij(r, r|x) can depend on r, whereas the metric condition requires that the cost of
an edge between identical labels is always zero. This additional flexibility can be useful in
practice.

3.3 Discussion

Since the optimum of a linear program is found at a vertex, the results in Section 3.2 show
that for associative MRFs the polytope defined by the constraints in Equation (3.5) has
vertices that do not lie too far from integral solutions. It turns out that the exact, integral
polytope can also be characterized as an LP, albeit one with exponentially many constraints.
Hence these results can be seen as bounding the gap between two polytopes. The exact
polytope is sometimes referred to as MARG(G), and the polytope defined by Equation (3.5)
is called LOCAL(G). We will return to this characterization of approximate inference in
Chapter 5.

Since we are interested primarily in using inference to make predictions from learned
parameters w, we must ensure associativity of the learned model (Equation (3.7)) in order

13



for the results presented here to be useful. This can be ensured by choosing non-negative
edge features for matching configurations, choosing zero edge features for non-matching
configurations, and restricting the parameters w ≥ 0. Doing this does not materially change
the learning problem.

There is, however, another important connection between inference and learning. Recall
that the central challenge of max-margin learning is the loss-augmented maximum

max
y∈Y

[
w · f(y|x(t)) + `(y,y(t))

]
. (3.12)

Recall as well that `(y,y(t)) is the Hamming loss
∑n

i=1 I(yi 6= y
(t)
i ), which we can write in

terms of the binary representation as n−
∑n

i=1

∑
r zi(r)z

(t)
i (r). By letting θi(r) = w·f i(r|x)−

z
(t)
i (r) and θij(r, r) = w · f ij(r, r|x) we can see that the LAM is itself an associative MAP

inference problem whenever the underlying MRF is associative.
Thus, MAP inference is useful not only for making test time predictions, but also for

learning the parameters of the model itself. In general, learning algorithms of all types rely
on inference subroutines. We will see later that for maximum likelihood learning, the central
problem of computing the gradient of the normalization term is essentially equivalent to the
test time inference problem of computing the marginals of y.

Given this dependence on inference at all stages, it is natural to ask whether the inference
approximation bounds shown here (and other similar results) lead directly to bounds on the
overall performance of a learning scheme. Unfortunately, they generally do not, as we showed
in previous work [5]. It turns out that even formally approximate inference algorithms
can lead to arbitrarily bad learning results, particularly when the learning and inference
algorithms are not appropriately matched. We will need to make additional assumptions in
order to obtain end-to-end learning scheme guarantees.
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Chapter 4

Learning bounds from approximate
inference

In this chapter we describe a recent result due to Martins, Smith, and Xing [6] showing that
under certain conditions approximate inference can be used as the basis for an end-to-end
learning scheme that provably achieves low additional risk compared with exact methods.
We begin by describing an online subgradient algorithm for optimizing the max-margin
objective in Equation (2.9). We show how to bound its performance in general and under
certain approximation assumptions. Unfortunately, the results from Chapter 3 do not meet
these assumptions. However, we describe additional conditions that, combined with inference
approximations, lead to an overall risk bound for approximate learning.

4.1 Subgradient optimization

We begin with the max-margin formulation

min
w

1

2
‖w‖2

s.t. w · f(y(t)|x(t)) ≥ max
y∈Y

[
w · f(y|x(t)) + `(y,y(t))

]
∀ t.

(4.1)

In practice, the data may not be separable; that is, we may not be able to achieve positive
margin, making the constraints infeasible. The standard solution is to add slack terms ζ to
cover any negative margin, and penalize them in the objective:

min
w

λ

2
‖w‖2 +

1

N

N∑
t=1

ζt

s.t. w · f(y(t)|x(t)) ≥ max
y∈Y

[
w · f(y|x(t)) + `(y,y(t))

]
− ζt ∀ t,

(4.2)

where λ is a tradeoff parameter that controls the strength of the penalty for margin violations.
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Given that the slack variables are always tight at the optimum, we can push the margin
constraints directly into the objective:

min
w∈W

λ

2
‖w‖2 +

1

N

N∑
t=1

rt(w), (4.3)

where rt(w) = maxy∈Y
[
w · f(y|x(t)) + `(y,y(t))

]
− w · f(y(t)|x(t)). Note that rt(w) ≥

`(y∗(x(t);w),y(t)) since by definition w · f(y∗(x(t);w)|x(t)) ≥ w · f(y(t)|x(t)). There may
be additional constraints, e.g., the non-negativity constraint on w required for learning
associative MRFs; we assume these constraints are included in the convex feasible region
W . The objective in Equation (4.3) is convex but not generally differentiable due to the
maximum operator. In order to optimize it, we can apply a subgradient descent algorithm
[10]:

• Initialize w1 = 0, and fix a learning rate sequence 〈ηt〉Nt=1.

• For t = 1, 2, . . . , N :

– Compute the LAM y′t = arg maxy∈Y
[
w · f(y|x(t)) + `(y,y(t))

]
.

– Compute the subgradient gt = λwt + f(y′t|x(t))− f(y(t)|x(t)).

– Generate new parameters wt+1 = ProjW (wt − ηtgt).

• Return the averaged parameters 1
N

∑N
t=1wt.

4.2 Regret bounds

Ratliff et al. [10] prove the following bound on the regret of the subgradient algorithm.

Theorem 3. Let G bound the norm of gt. (G is finite if feature vectors and parameters w
have bounded norm. The latter can be enforced through W.) Fix ηt = 1/(λt). Then

1

N

N∑
t=1

`(y∗(x(t);wt),y
(t)) ≤ 1

N

N∑
t=1

rt(wt)

≤ 1

N

N∑
t=1

rt(w
∗) +

λ

2
‖w∗‖2 +

G2(1 + logN)

2λN
,

(4.4)

where w∗ is an arbitrary reference weight vector, e.g., the one that minimizes the bound.

If we choose λ =
√

G2(1+logN)
‖w∗‖2N , then we get

1

N

N∑
t=1

`(y∗(x(t);wt),y
(t)) ≤ 1

N

N∑
t=1

rt(w
∗) + ‖w∗‖

√
G2(1 + logN)

N
. (4.5)
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This says that the average loss (regret) experienced during training, if predictions are made
at each iteration using the current parameter vector wt, is bounded by the regret of the
optimal parameter vector w∗ plus a quantity that diminishes with N .

The bound also applies for approximations of the subgradient. We begin by writing the
LAM in a slightly different form. Let F (x) be a matrix with columns (using our functional
indices) given by Fi(r|x) = f i(r|x) and Fij(r, s|x) = f ij(r, s|x). We treat w and z as
column vectors. Using the technique from Section 3.3 to incorporate the loss we have

max
y∈Y

[
w · f(y|x(t)) + `(y,y(t))

]
= max

z

(
w>F (x(t))− (z

(t)
node)

>
)
z + n, (4.6)

where znode denotes z with edge indicators zij(r, s) zeroed out, and the maximization over
z is implicitly subject to the ILP constraints in Equation (3.4). With this notation, we have

rt(w) = max
z

(
w>F (x(t))− (z

(t)
node)

>
)
z + n−w>F (x(t))z(t). (4.7)

When we maximize with respect to the LP-relaxed constraint set, we use the approximate
operator m̂ax in place of max.

Now consider computing the LAM at each iteration with m̂ax; that is, performing approx-
imate inference using the formulation in Equation (3.5). Then Theorem 3 holds with rt(w) re-

placed by r̂t(w) = m̂axz(w
>F (x(t))−(z

(t)
node)

>)z+n−w>F (x(t))z(t). Unfortunately, the ap-
proximation bounds in Chapter 3 are inadequate to guarantee that r̂t(w) approximates rt(w).

This is because they guarantee an approximation ratio for m̂axz(w
>F (x(t))− (z

(t)
node)

>)z but
do not account for the terms n − w>F (x(t))z(t). Hence we need further assumptions to
bound learning performance.

4.3 Approximating the subgradient

Theorem 4. Assume that the maximum 2-norm of any column of F (x) (over all x ∈ X ) is
R. (For example, if we have binary features, then R is the square root of maximum number
of simultaneous non-zero features at any single node or edge.) Suppose that the m̂ax operator
is an α-approximation for the LAM objective. Then for any w and t,

rt(w) ≤ r̂t(w) ≤ rt(w) + (α− 1)(n+ ‖w‖2R(n+m)) (4.8)

Proof. Since the LP-relaxed constraints define an outer bound on the ILP constraints, we
have that r̂t(w) ≥ rt(w). For the second inequality, we have

r̂t(w) = m̂ax
z

(
w>F (x(t))− (z

(t)
node)

>
)
z + n−w>F (x(t))z(t)

≤ αmax
z

(
w>F (x(t))− (z

(t)
node)

>
)
z + n−w>F (x(t))z(t)

= rt(w) + (α− 1) max
z

(
w>F (x(t))− (z

(t)
node)

>
)
z.

(4.9)
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Using Hölder’s inequality,(
w>F (x(t))− (z

(t)
node)

>
)
z

=
(
w>Fnode(x

(t))− (z
(t)
node)

>
)
znode +w>Fedge(x

(t))zedge

≤ ‖w>Fnode(x
(t))− (z

(t)
node)

>‖∞‖znode‖1 + ‖w>Fedge(x
(t))‖∞‖zedge‖1

≤ (‖w‖2R + 1)n+ ‖w‖2Rm.

(4.10)

The bound follows.

Martins et al. prove a slightly different version of the above bound, assuming an alternate
type of LAM approximation.

Theorem 5. Suppose that for every ẑ within the LP-relaxed polytope there exists a vertex z
of the ILP polytope such that `(ẑ, z)

.
= n− z>ẑ ≤ L for some constant L. Then

rt(w) ≤ r̂t(w) ≤ rt(w) + L(1 + ‖w‖2R). (4.11)

Now that we have a bound on the difference between r̂t(w) and rt(w), we can apply
Theorem 3 to obtain an approximate learning bound. We use the following concentration
result to convert the regret bound to a risk bound.

Lemma 3 (from [1]). Let B be a constant that upper bounds |r̂t(w)|. Then for any δ > 0,
with probability at least 1− δ,

1

N

N∑
t=1

E[r̂t(wt)] ≤
1

N

N∑
t=1

r̂t(wt) +B

√
2

N
log

1

δ
. (4.12)

Theorem 6. Let ŵ be the averaged weight vector produced by the subgradient algorithm

using α-approximate LAM inference with learning rate ηt = 1/(λt) and λ =
√

G2(1+logN)
‖w∗‖2N .

Let ŷ(x;w) be the result of rounding ẑ(x;w) as described in Section 3.2. Then for any w∗

and δ > 0, with probability at least 1− δ,

E
(x,y)∼D

[`(ŷ(x; ŵ),y)]

≤ 1

N

N∑
t=1

rt(w
∗) + ‖w∗‖

√
G2(1 + logN)

N
+ (α− 1)(n+ ‖w∗‖2R(n+m)) +B

√
2

N
log

1

δ
.

(4.13)

Proof. Since r̂(w) is convex, by Jensen’s inequality we have

E
(x,y)∼D

[`(ŷ(x; ŵ),y)] ≤ E[r̂(ŵ)] ≤ 1

N

N∑
t=1

E[r̂t(wt)]. (4.14)

Combining with Theorem 4, Theorem 3, and Lemma 3 yields the bound.
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4.4 Discussion

The bound in Theorem 6 has four terms. The first two are the standard regret terms for the
subgradient algorithm, and the fourth is the penalty for converting the regret bound (over
the empirical distribution S) to a risk bound (over the true distribution D). The third term,
due to the approximation, is most relevant to our discussion. It says that the additional risk
incurred due to the use of α-approximate inference for learning and prediction is bounded by
(α−1)(n+‖w∗‖2R(n+m)). Thus, as our approximation ratio approaches 1, the risk penalty
shrinks to zero. It also says that the risk penalty scales with the norm of the optimal weight
vector w∗ and the maximum norm of any single node or edge feature vector R. This can be
seen as analogous to the standard Perceptron mistake bound, where the number of mistakes
made by the algorithm on linearly separable data is known to be (‖w∗‖2R)2, where w∗ in
this case is the smallest weight vector achieving a margin of 1. However, the Perceptron
bound is on the total number of mistakes, while the bound in Theorem 6 is a penalty on the
risk; hence as N →∞ the Perceptron yields zero average regret (for separable data), while
the approximation term in the subgradient bound does not shrink with N .

Martins et al. note that we can modify the approximate subgradient algorithm by some-
times performing approximate LAM inference, and sometimes performing exact LAM infer-
ence. Though the latter is generally intractable, for some problems it can be solved in a
reasonable amount of time using standard software packages such as CPLEX. They show
that the more often we perform exact inference, the lower the risk penalty. In particular, if
we flip a biased coin on each iteration, doing approximate inference with probability 1/

√
t

and exact inference otherwise, then the risk penalty goes to zero as N →∞. However, this
does not seem to be significantly more practical than performing exact inference on every
iteration, which we have assumed is too expensive to begin with.

Theorem 6 is, to our knowledge, the first end-to-end approximate learning bound for
MRFs in this general setting. However, it is limited in a few important ways. First, noting
that ‖w∗‖2R(n + m) ≥ 0, the bound is trivial whenever α ≥ 2 since n is the maximum
risk. Recall that the best known approximation ratio for general associative MRFs is 2. In
general nontriviality requires

α <
2n+ ‖w∗‖2R(n+m)

n+ ‖w∗‖2R(n+m)
. (4.15)

For many problems, e.g., NLP tasks, the number of features can be extremely large, hence
the ratio above may be very close to 1. The bound therefore does not offer much practical
comfort. The alternate version given in Theorem 5 is interesting (here the risk penalty due
to approximation is L(1+‖w∗‖2R)); however, it is not clear in what situations we can expect
an approximation bound of this type to hold for LP-relaxed inference. A counter-example
showing that in general L can be O(n) is given in our previous work [5].

A second concern is that the bound is in terms of exact rt(w), which only upper bounds
the exact loss. Thus we cannot technically conclude that the approximate setting leads to a
bound on the risk gap, only the gap between approximate risk and exact rt(w). Nonetheless,
this is a relatively minor issue, since risk bounds for exact methods typically rely on the same
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upper bound rt(w). Thus, Theorem 6 says that the risk of the approximate scheme is at
most a certain amount more than the best known bound on the exact risk.
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Chapter 5

Approximate learning of denoising
problems

In this chapter we show a result due to Wainwright [14] that bounds the performance penalty
incurred in a particular setting when approximate structured learning and inference are used
together in place of intractable exact methods. Though the result does not extend easily
to some of the problems for which approximate structured methods are commonly used, it
provides a useful perspective on the effects of approximate learning under noisy conditions.

The result is also unique in that it does not rely on inference approximation bounds; in
fact, the inference method used here does not offer general approximation guarantees for the
setting in which it is applied. It is interesting, then, that one can obtain a bound on the
performance of an approximate inference method when using an appropriately learned model,
even though an approximation bound does not exist for general models. This suggests that
more learning results might be available even where inference bounds are not, in contrast to
the approach discussed in the previous chapter.

5.1 Setting

Suppose we wish to learn a simple denoising task over a set of structured outputs. As before,
we have a set of n discrete variables Y , each taking one of k labels, that we will model with
a pairwise MRF. However, here each label r ∈ K corresponds to a Gaussian distribution
N (νr, σ

2
r), and our prediction target is an instance vector z ∈ Rd drawn from a Gaussian

mixture model where the value of yi determines the component from which zi is sampled.
The input x ∈ Rd is a noisy version of z where independent zero-mean Gaussian noise with
unit variance has been added to every component; that is, xi = αzi +

√
1− α2εi for some

parameter α, where εi ∼ N (0, 1). To summarize, examples (x,y, z) are generated according
to the following procedure:

1. Sample a vector of labels y ∈ Y from the fixed distribution D.

2. Sample an instance vector z according to zi ∼ N (νyi , σ
2
yi

).
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3. Compute input x = αz +
√

1− α2ε, where εi ∼ N (0, 1).

The goal at test time is to reconstruct, given x, the instance values z. (Note that we
are not attempting to predict y itself, a point we will return to later.) In order to take into
account structured information, we will learn the parameters of a pairwise MRF over Y that
captures interactions between the adjacent variables.

To take a concrete example, suppose that we receive a sequence of images depicting only
sky, grass, and earth. We can think of y as specifying which of the three is visible at each
pixel. Sky tends to be blue, but is not uniformly blue, thus the true color z of a particular
sky pixel is drawn from some Gaussian distribution centered in blue. Likewise, grass pixel
colors are drawn from a Gaussian centered in green, and earth pixel colors from a Gaussian
centered in brown. In addition, the camera used to create the images is imperfect, so the
final image x that we receive has random noise added to the color of every pixel. Our goal
is to deduce the “true” image z using our noisy input and knowledge about y; for example,
sky pixels tend to be next to other sky pixels, and tend to appear near the top of an image.

5.2 Parameterization

Because the underlying distribution over Y is not conditioned on any input, we do not need
a conditional MRF with a parameterization based on a joint feature function. Instead, we
define the functional parameters wi(r) for each node i and label r, letting the potential
ψi(r) = exp(wi(r)). Similarly, define wij(r, s) for each edge ij and label pair (r, s), letting
ψij(r, s) = exp(wij(r, s)). Let w be the concatenation of all such parameters. Then the
probability distribution defined by our MRF is given by

Pw(y) =
1

Z(w)

∏
i∈V

exp(wi(yi))
∏
ij∈E

exp(wij(yi, yj)), (5.1)

and the log-probability of a labeling y is

logPw(y) =
∑
i∈V

wi(yi) +
∑
ij∈E

wij(yi, yj)− logZ(w). (5.2)

We can think of this setup as utilizing a trivial feature representation φ(y) which is the
concatenation of the indicators I(yi = r) for all nodes i and labels r and I(yi = r ∧ yj = s)
for all edges ij and label pairs (r, s). The above can then be rewritten as

logPw(y) = w · φ(y)− logZ(w). (5.3)

The dimension of this parameterization is d = nk +mk2.

5.3 Variational inference

Recall that for maximum likelihood learning we need to compute the gradient of the loga-
rithm of the normalization term Z(w) =

∑
y Pw(y), which is in general NP-hard. However,
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logZ(w) is convex (it is the log-sum-exp of quantities linear in w), so we will use convex
duality to write it in a variational form.

First, we note that the gradient of logZ(w) is simply the marginal distribution of y
under Pw(y):

∇ logZ(w) =
1

Z(w)

∑
y

exp(w · φ(y))φ(y)

= E
y∼Pw

[φ(y)].
(5.4)

Next, consider the conjugate dual function A∗(µ) of A(w) = logZ(w), defined as follows:

A∗(µ) = sup
w∈Rd

[µ ·w − A(w)] . (5.5)

To solve the supremum, we take the gradient.

∇ [µ ·w − A(w)] = µ−∇ logZ(w)

= µ− E
y∼Pw

[φ(y)]. (5.6)

Thus, the supremum is attained at w for which µ represents the marginals of Pw(y). If
there is no such w, then A∗(µ) is infinite.

Call the set of µ for which A∗(µ) is finite MARG(G), where G is the MRF graph. This
set consists of all µ that represent valid (globally consistent) marginals for G. Let w(µ) be
the optimum w, i.e., the parameters that generate marginals µ. We omit the details, but it
is possible to show that A∗(µ) = −H(Pw(µ)) whenever it is finite, where H is the entropy
function H(P ) = −

∑
y P (y) logP (y).

We can now write logZ(w) in terms of its conjugate dual:

logZ(w) = A(w) = sup
µ∈Rd

[µ ·w − A∗(µ)]

= max
µ∈MARG(G)

[
µ ·w +H(Pw(µ))

]
.

(5.7)

By Danskin’s theorem, we have that have that

∇ logZ(w) = arg max
µ∈MARG(G)

[
µ ·w +H(Pw(µ))

]
. (5.8)

Of course, solving this optimization is not necessarily any easier than computing ∇ logZ(w)
by exponential sum. First, the set MARG(G) is difficult to characterize. Second, we do not
have a closed form for H(Pw(µ)). However, we can provide approximations for both of these,
leading to a tractable estimate of ∇ logZ(w).
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5.3.1 Convex approximation

We approximate Equation (5.8) by specifying a convex outer bound for MARG(G) and a
convex approximation for −H(Pw(µ)). Observe that any µ forming the marginal distribution
for some choice of parameters w must at least be locally consistent. We define the following
constraints on pseudomarginals τ .

k∑
r=1

τi(r) = 1 ∀ i

k∑
s=1

τij(r, s) = τi(r) ∀ ij ∈ E, r ∈ K

(5.9)

We call the set of τ satisfying these constraints LOCAL(G), where, by the above logic,
LOCAL(G) ⊇ MARG(G). Note that these are the same constraints as those for the linear
program in Equation (3.5).

We next turn to approximating the entropy. Since we want to avoid the difficult task of
actually locating an appropriate w (which may not exist for pseudomarginals τ anyway),
we compute a local entropy approximation using the fact that τ are pseudomarginals. In
order to ensure that the result is convex, we take a convex combination of tree entropies, for
which the local approximation is always exact. (Convexification can be done in other ways
as well, see [8] for some recent methods.)

Let T be a set of trees over the nodes of G, and let ρ(T ) be a distribution over the trees
T ∈ T . The choice of trees is arbitrary, though for a good approximation at least one tree
should cover each edge in G. We assume T has been fixed in advance. We define the convex
negative entropy approximation

B∗(τ ) = −
∑
T∈T

ρ(T )

[∑
i∈V

H(τ i)−
∑
ij∈E

I(τ ij)

]
, (5.10)

where H is again the entropy function, this time for the marginal distribution of a single
variable, and I is the mutual information between two adjacent variables. In addition to
being convex, it can be shown that B∗ is a lower bound on the true negative entropy.

Combining our entropy approximation with the outer bound LOCAL(G), we can now
state a convex variational approximation of logZ(w):

logZ(w) ≈ B(w) = max
τ∈LOCAL(G)

[τ ·w −B∗(τ )] . (5.11)

Similarly, we can approximate the gradient as

∇ logZ(w) ≈ arg max
τ∈LOCAL(G)

[τ ·w −B∗(τ )] . (5.12)

This approximate formulation is efficiently solvable since the objective is concave and
LOCAL(G) is described by a polynomial number of linear constraints. A standard convex
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optimization package could be used to compute the solution, although the tree re-weighted
(TRW) message passing algorithm is designed for this purpose and generally more efficient
[15].

5.4 Learning

We assume a training sample of label vectors S = {y(1),y(2), . . . ,y(N)}. Recall that the goal
of maximum likelihood training is to maximize the log-likelihood

L(w, S) =
N∑
t=1

logPw(y(t))

=
N∑
t=1

[
w · φ(y(t))− logZ(w)

]
= w ·

[
N∑
t=1

φ(y(t))

]
−N logZ(w).

(5.13)

We can use standard methods to optimize L(w, S) by computing the gradient

∇L(w, S) =
N∑
t=1

φ(y(t))−N∇ logZ(w). (5.14)

However, we cannot compute ∇ logZ(w) exactly. Instead, we substitute our variational
approximation:

∇L̂(w, S) =
N∑
t=1

φ(y(t))−N arg max
τ∈LOCAL(G)

[τ ·w −B∗(τ )] . (5.15)

Proposition 1 (moment matching). The parameters ŵ obtained at the optimum of Equa-
tion (5.15) yield pseudomarginals τ̂ = arg maxτ∈LOCAL(G) [τ · ŵ −B∗(τ )] that are equal to
the empirical marginals of S. That is,

τ̂i(r) =
1

N

N∑
t=1

I(y(t)i = r) ∀ i, r

τ̂ij(r, s) =
1

N

N∑
t=1

I(y(t)i = r ∧ y(t)j = s) ∀ ij ∈ E, r, s.

(5.16)

Proof. Immediate from Equation (5.15) and the optimality condition ∇L̂(w, S) = 0.

By an analogous argument we can show that w∗ optimizing the exact log-likelihood yields
a distribution whose exact marginals µ∗ are equal to the empirical marginals of S.
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5.5 Inference

At test time, we need to estimate the instance vector z given an input x. The idea will
be to first infer from the noisy input a set of marginals µ for the label variables Y , and
then use those marginals to derive an estimate z(x) of the instance vector. Again, the exact
formulation will be intractable, and we will rely on an efficient approximation.

For concreteness we assume that k = 2—that is, there are only two underlying com-
ponents in the Gaussian mixture model—although the result applies more generally. For
r ∈ {1, 2} we write r̃ = 3 − r to indicate the opposite label. Omitting details, it turns out
that for a new noisy input x the posterior distribution of y is given by Pw∗+v(x), where w∗ is
the weight vector that maximizes the log-likelihood of the training data and v(x) expresses
the additional information contained in x. The form of v(x) is as follows:

vi(r;x) =
1

2

(
log

α2σ2
r̃ + (1− α2)

α2σ2
r + (1− α2)

− (xi − ανr)2

α2σ2
r + (1− α2)

+
(xi − ανr̃)2

α2σ2
r̃ + (1− α2)

)
vij(r, s;x) = 0.

(5.17)

Note that x offers information about node values yi, but not about pairwise interactions.
To compute marginals µ(w∗+v(x))

.
= Ey∼P(w∗+v(x))

[φ(y)], we recall from Equation (5.4)
that

E
y∼P(w∗+v(x))

[φ(y)] = ∇ logZ(w∗ + v(x)) = arg max
µ∈MARG(G)

[
µ · (w∗ + v(x)) +H(P(w∗+v(x)))

]
.

(5.18)
Thus, as in max-margin learning, the same inference problem appears during learning and
prediction. We can compute Equation (5.18) using the TRW algorithm.

Given marginals µ(w∗ + v(x)) of the posterior distribution of y, the optimal Bayesian
least squares estimator z∗(x) is given by

z∗i (xi) =
∑

r∈{1,2}

µi(r;w
∗ + v(x))gr(xi), (5.19)

where the Gaussian estimator for mixture component r is

gr(xi) =
ασ2

r

α2σ2
r + (1− α2)

(xi − ανr) + νr. (5.20)

Since we cannot compute w∗ or µ(w∗ + v(x)), we resort to a variational approximation
and instead compute test time pseudomarginals

τ (ŵ + v(x)) = arg max
τ∈LOCAL(G)

[τ · (ŵ + v(x))−B∗(τ )] , (5.21)

where ŵ is the weight vector learned using the variational approximation to the maximum
likelihood objective. Our approximate estimator ẑ(x) is given by

ẑi(xi) =
∑

r∈{1,2}

τi(r; ŵ + v(x))gr(xi). (5.22)
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5.6 Risk bound

We will show that the mean-squared risk gap between the exact estimator and the approx-
imate estimator is bounded. We begin with a lemma showing that small changes in model
parameters result in small changes to the marginal predictions.

Lemma 4 (stability). There exists L <∞ such that for any δ ∈ Rd,

‖µ(w + δ)− µ(w)‖2 ≤ L‖δ‖2. (5.23)

Proof. By Equation (5.4) we have that µ(w) = ∇ logZ(w) = ∇A(w), thus

‖µ(w + δ)− µ(w)‖2 = ‖∇A(w + δ)−∇A(w)‖2
= ‖∇2A(w + tδ)δ‖2

(5.24)

for some t ∈ [0, 1], by the mean value theorem. By properties of the conjugate dual,
∇2A(w) = [∇2A∗(µ(w))]−1. Since A∗ is the negative entropy function, it is strongly convex.
(Technically, we need to remove affine dependencies in our representation to ensure strong
convexity. Since doing so does not affect the expressivity of the model or contribute any use-
ful intuition, we omit the details.) Thus the singular values of ∇2A∗ are uniformly bounded
away from zero, and the singular values of ∇2A are uniformly bounded from above.

Since our variational approximation is based on a strongly convex negative entropy
approximation, the same logic allows us to conclude that there exists R < ∞ such that
‖τ (w + δ)− τ (w)‖2 < R‖δ‖2 for all δ ∈ Rd. We can now state the bound.

Theorem 7. Let R∗ = 1
n E ‖z

∗(x)− z‖22 be the expected per-position mean-squared error of

the exact estimator z∗(x), and let R̂ = 1
n E ‖ẑ(x) − z‖22be the expected per-position mean-

squared error of the approximate estimator ẑ(x). Then the gap R̂ − R∗ is bounded by

E

[
min

(
1, (L+R)

‖v(x)‖2√
n

)√
1

n

∑
i∈V

|g1(xi)− g2(xi)|4
]
. (5.25)

Proof. Since z∗(x) = Ez|x[z] is the optimal Bayesian least squares estimator, we have

R̂ − R∗ =
1

n
E ‖ẑ(x)− z‖22 −

1

n
E ‖z∗(x)− z‖22

=
1

n
E ‖z∗(x)− ẑ(x)‖22.

(5.26)

Since k = 2, µi(r) = 1− µi(r̃) and similarly for τ , so

z∗i (x)− ẑi(x) = [µi(1;w∗ + v(x))− τi(1; ŵ + v(x))] (g1(xi)− g2(xi)) , (5.27)

27



and thus

1

n
‖z∗(x)− ẑ(x)‖22 =

1

n

∑
i∈V

[µi(1;w∗ + v(x))− τi(1; ŵ + v(x))]2 (g1(xi)− g2(xi))2

≤ 1

n

∑
i∈V

|µi(1;w∗ + v(x))− τi(1; ŵ + v(x))| (g1(xi)− g2(xi))2 ,
(5.28)

since µ and τ are (pseudo)marginal vectors whose elements are bounded by 1. We can apply
the Cauchy-Schwarz inequality to upper bound the last line by

1

n
‖µ(1;w∗ + v(x))− τ (1; ŵ + v(x))‖2

√∑
i∈V

|g1(xi)− g2(xi)|4, (5.29)

where µ(1) ∈ Rn is the vector of node marginals for the label 1, and likewise for τ (1). We
omit the 1s going forward to lighten notation.

We put aside the quantity
√

1
n

∑
i∈V |g1(xi)− g2(xi)|4 and focus on bounding ‖µ(w∗ +

v(x))−τ (ŵ+v(x))‖2/
√
n. Trivially, this term is at most 1, since µ and τ are (pseudo)marginal

vectors. When v(x) is small, we can do better by applying the moment matching property
from Proposition 1, which ensures that τ (ŵ) = µ(w∗):

‖µ(w∗ + v(x))− τ (ŵ + v(x))‖2 = ‖[µ(w∗ + v(x))− µ(w∗)]− [τ (ŵ + v(x))− τ (ŵ)]‖2
≤ ‖µ(w∗ + v(x))− µ(w∗)‖2 + ‖τ (ŵ + v(x))− τ (ŵ)‖2
≤ (L+R)‖v(x)‖2,

(5.30)

applying Lemma 4 on the last line.
Taking the minimum of these two bounds and the expectation overall yields the bound.

5.7 Discussion

To get intuition about the bound in Theorem 7, we consider two cases: the high noise
regime (α → 0) and the low noise regime (α → 1). In the high noise regime, the amount
of information being contributed by the input x is very small; as α goes to zero, so does
‖v(x)‖2. Thus the bound shrinks to zero. In the particular case of α = 0; that is, the input
is complete noise, we can do no better than guessing the empirical marginals for y that
we observed during training. Because of the moment matching property of our approximate
variational inference, our estimates of the pseudomarginals are the exact empirical marginals
in the training set. Thus, we make the same predictions that would be made using exact
learning and inference. (Note that in fact we do not need clever algorithms at all in this
case; we could simply use the empirical marginals directly.) For small α > 0, we have used
the stability property of our approximation to show that the small amount of information
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added by the input x does not cause a dramatic change in the estimated marginals. Thus,
our predictions cannot differ from the exact estimates by too much. As α rises, the stability
bound becomes weaker, and at some point it is better to simply bound the difference between
exact and approximate marginals by 1.

Interestingly, the above discussion of the high noise regime does not hold if our approxi-
mate inference procedure relies on the parameters w∗ found using exact learning, because the
moment matching property fails. That is, the inference method by itself does not offer any
guarantees. It is only when paired with appropriately learned parameters that performance
approaches the optimal result. To some extent this mirrors the intuitions in Chapter 4, but
there the goal was to adapt known inference bounds to the task of learning. Here, the re-
sult arises directly from the connection between learning and inference, which suggests that
even inference methods that do not have known guarantees on their own might be useful for
learning results.

In the low noise regime, as α → 1, the value of gr(x) approaches x and thus the term√
1
n

∑
i∈V |g1(xi)− g2(xi)|4 tends to zero, as does the bound. Intuitively, when α is large, we

do not need to know the underlying labels y since x is a good estimate of z. Although the
amount of information ‖v(x)‖2 injected into the computation of marginals might be large
and cause a poor approximation τ of the marginals µ, it hardly matters, since we will mostly
ignore them and predict z ≈ x. For moderate noise levels, the bound is an interpolation
between the two extremes. Our marginal approximations τ are imperfect, but they only
partially determine our predictions.

While the bound of Theorem 7 is a compelling result and offers useful intuition about
the effects of noise on the performance of approximate learning and inference, the denoising
setting is somewhat specific. In general, we would like to understand the behavior of approx-
imate methods on structured classification problems as defined in Chapter 2. Unfortunately,
it is not obvious how to extend the result shown here to the more general case for several
reasons.

First, Theorem 7 assumes that the noise model is known. Though the bound is instructive
in both high and low-noise regimes, we cannot describe the estimators in Equation (5.19)
and Equation (5.22) without knowing which regime we are in; that is, without knowing α.
If we think of “noise” more generally as a measure of the (inverse) amount of information
provided by the input x, then in most practical settings we can expect to see some examples
that are less noisy, and others that are more noisy, without knowing in advance which is
which.

Second, in the low noise regime, which is the most interesting for learning, the bound
breaks down when the variances σ2

r of the mixture components become small. To see this,
observe that if σ2

r � (1 − α2), gr(x) is close to νr. This means that the bound is nearly
as large as the squared difference between ν1 and ν2. This is a trivial bound in the sense
that we can set every zi to ν1 or ν2 at random and be assured of the same result. If the
mixture components are tightly concentrated around the means, i.e., the goal is essentially to
predict which of the components each zi belongs to, the bound does not offer much guidance.
Unfortunately, this is exactly the classification setting, where the identity of the label y is
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what matters, and there is not in general a continuous semantic relationship between different
labels.

Finally, it is not clear how to adapt the bound to a conditional MRF where we use a
feature-based parameterization to model P (y|x). In the conditional scenario, the moment
matching property implies that the learned parameters ŵ yield joint feature expectations
matching the empirical distribution. Given a new input x at test time, this does not guar-
antee that the conditional marginals produced by the exact and approximate methods will
agree in the high noise regime, in contrast to the denoising case. Indeed, for conditional
models the notion of noise itself is somewhat vague, since we do not model the distribution
of y without a reference input x. In that sense the input always contains all of the signal;
there can be no marginals without x.
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Chapter 6

Conclusions

We have seen two basic approaches to bounding the performance of efficient structured
learning schemes. In the first, the relatively well-studied inference problem was used as a
basis for deriving risk bounds on a scheme in which approximate inference is used for both
learning the model parameters and making predictions on new inputs. In the second, a bound
was derived directly for the learning scheme as a whole; the underlying inference method,
used again for both learning and prediction, was not required to satisfy (and generally did
not satisfy) an approximation bound. While the first approach allowed us to derive bounds
for general learning of MRFs, allowing the use of any applicable inference approximation,
the second showed that it may be possible to get bounds even for problems where we do
not have inference guarantees. This seems like an especially interesting direction for future
work.

The two main results presented in this report share several high-level intuitions. First,
both require the use of closely related inference methods during learning and prediction.
For the subgradient bound, we used the same LP-relaxation to compute the LAM during
training and the MAP solution for testing. For the denoising bound, it was important to use
the same variational approximation for estimating both the gradient of the normalization
term for maximum likelihood learning and the label marginals for new inputs. The value of
this coordination is intuitive: given that an inexact inference algorithm will make mistakes
at test time, it seems natural that it would be advantageous to choose the model parameters
with an awareness of those mistakes.

Second, both results depend on compatibility between the learning formulation and the
type of inference approximation used as a subroutine. In the subgradient algorithm, LAM re-
sults are used to compute subgradients of the max-margin objective; thus approximate LAM
inference leads directly to approximate subgradients and hence approximate convergence
results. For the denoising bound, we relied on the fact that maximum likelihood parameter
estimation combined with a convex dual approximation to the normalization term guarantees
the moment-matching property. Again, there are strong intuitions for such coordination be-
tween learning and inference: the learning method cannot be expected to succeed if it relies
on properties of exact inference that are not maintained by the approximation. For example,
in previous work we showed that the combination of Perceptron learning with loopy belief
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propagation inference can lead to divergence even when inference yields a 1.1-approximation
and the data are separable [5].

Finally, the fundamental difference between inference for prediction and inference as a
subroutine for learning is that at test time we typically assume the model parameters are
fixed and “correct”, while during learning they are in flux and do not necessarily yield scores
that correlate with the quality of the solution. (Such correlation is really the end goal
of the learning process, so almost by definition it cannot exist while learning is ongoing.)
To use approximate inference for learning, then, we need some means of controlling the
relationship between model scores and solution loss. The results presented here achieve
this control in different ways. For the subgradient bound, the connection is a worst-case
analysis in terms of the norms of the feature vectors and the optimal weight vector, as
well as the number of outputs n. (This interpretation may not be obvious from the proofs
shown in Chapter 4, but is made apparent by Lemma 1 in [6].) However, as we showed,
this bound can be quite loose. In the denoising case the stability condition ensures that
predictions made with similar sets of parameters (and thus for which scores are similar)
have low loss. Unfortunately, this relationship breaks down as the mixture distribution
because more peaked, as in classification. Thus, a central challenge going forward seems to
be improving the understanding of this important relationship between model score and loss
during learning.

The literature on approximate learning of structured prediction problems is still sparse,
and the bounds shown here are among the earliest known results. Each comes with significant
limitations. Nonetheless, collectively they offer some useful insight into the problem and the
ways in which learning, inference for learning, and inference for prediction interact. They
also highlight the major remaining challenges, and suggest broad theoretical principles that
may lead to useful progress in future work.
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