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Abstract

The problem of evaluating machine translation (MT) systems is more challenging than

it may first appear, as many diverse translations may often be considered equally correct.

The task is even more difficult when practical circumstances require the evaluation to be

done automatically, e.g., for incremental system development and error analysis. While

several automatic metrics such as Bleu have been proposed and adopted for large-scale MT

system discrimination, they all fail to achieve satisfactory levels of correlation with human

judgements at the sentence level. Here, a new class of learning metrics based on support

vector machines is proposed and shown to significantly improve upon current automatic

evaluators, increasing performance halfway toward that achieved by independent human

evaluators. Training only to classify translations as either machine- or human-produced

avoids the myriad problems inherent in obtaining the desired human judgement targets,

and is shown to nevertheless induce a strong correlation with those judgements. Future

research includes exploring dependencies with respect to the feature set.
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Chapter 1

Introduction

Machine Translation (MT), the automated conversion of text from one natural language

to another, has been a longstanding subject of interest and research. However, though

in principle the goal of an MT system is clear, in reality a number of factors make the

problem of evaluating success for such systems difficult. End users might apply MT toward

a wide range of tasks from cross-language information retrieval to the full replacement of

human translators, and each relies on a potentially unique set of characteristics from the

translated output. Translating literature, for example, probably requires complete fluency

and the ability to accurately convey extremely subtle ideas (depending even on the context

of historically or thematically related works), while information-retrieval applications might

only require a minimal “keyword” translation. Therefore, MT evaluation has a strong task-

dependency. Additionally, the ambiguity and multiplicity of solutions even given strict

qualitative criteria make the task of evaluation particularly difficult. Unlike problems such

as automatic speech recognition, in which the goal is to exactly recognize a spoken utterance,

MT is typically without a clear, objective target: “he walked the dog” and “he took the

dog for a walk” may be equally good translations of a single foreign phrase, despite their

syntactic differences.

The problem of MT evaluation has therefore necessarily received significant attention

alongside the development of MT systems themselves. As it specifically aims to address

the needs of humans who communicate with language, MT is most naturally and effec-
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tively evaluated through the manual efforts of such users, and extensive research has been

conducted in order to describe, test, and taxonomize various methods and considerations

involved in doing so [6, 7]. However, the human evaluation of MT systems, while providing

the most direct and reliable assessment, has numerous drawbacks; primarily prohibitive are

the time and expense involved in organizing and executing a user study. Subjects must

be located, trained, presented with evaluation materials, and compensated; furthermore,

to alleviate biases due to academic background or bilingual experience, a large number of

subjects is usually preferable.

While manual methods may remain viable for isolated, large-scale evaluations, re-

searchers should ideally benefit from the ability to quickly and accurately assess their own

systems repeatedly as new ideas are implemented; in these situations, automatic meth-

ods have the potential to expedite the development of successful MT systems by greatly

reducing the resources required for evaluation. In addition, new statistical MT systems

have successfully incorporated training methods that directly optimize for the scores of

automatic evaluation metrics [1]. Having reliable such metrics therefore implies that MT

systems might be not only tested but trained very rapidly.

Of course, the primary problem with an automatic evaluation metric is the potential loss

of accuracy involved in using a computer to perform a task that is most natural for humans;

indeed, as described above, the precise goal of MT evaluation is not easily formalized.

Furthermore, particularly when MT systems are trained directly using automatic metrics

as a criteria, any weaknesses (e.g., situations in which scores are inappropriately inflated)

are likely to be quickly exploited, rendering the metric useless. Therefore, a primary goal

of any automatic MT evaluation metric should be a strong and consistent correlation with

human judgements of the same outputs. Secondary goals may include the presentation of

quantitative evaluations along one or more interpretable axes and efficiency with respect to

computational or linguistic resources.
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1.1 Automatic MT Evaluation Metrics

1.1.1 Definitions

A machine translation evaluation metric can be defined as follows: Assuming that an MT

system takes foreign text f and produces translated output text e, and that reference trans-

lations e∗1, e
∗
2, . . . , e

∗
n of f , deemed to be “correct” (typically produced by human translators)

are available, an evaluation metric is a function F (e, e∗1, e
∗
2, . . . , e

∗
n). The task-dependency of

evaluation implies that the output of the metric should not be binary; it should instead be

presented along at least one continuous axis so that decisions of acceptability can be made

with respect to particular applications. Here, the output of the metric is assumed to be a

real number reflecting the correctness of e in some monotone way. (Assume without loss

of generality that the output has been transformed such that larger values always reflect

a more positive evaluation.) The meaning of “correctness” will be more carefully stated

below with respect to the goals of an automatic MT evaluation metric.

Note, however, that this definition is still not entirely general; evaluations might con-

ceivably also rely on the source text f , for example. Such considerations are ignored here

because f is known to the MT system under evaluation; any dependency between e and f

exploited by an automatic metric could thus be captured identically in the translation phase.

In other words, if the metric were to rely on some automated notion of similarity between

e and f , a system designer could “cheat” by directly incorporating the very same measure

into his or her system, thereby guaranteeing strong evaluations. Of course, if the measure is

particularly reliable, this may not seem such a bad thing; furthermore, the relationship of f

with e almost surely plays a large role in determining the success of a translation. However,

given that humans are capable of evaluating MT outputs based on reference translations

alone (and, in particular, without knowledge of the source language), and under the assump-

tion that any automated measure is likely to have exploitable weaknesses of some kind, the

source text f is omitted here as a possible input to the automated evaluator in an attempt

to reduce the possibility for developing pathological behavior. Moreover, the discovery of

relationships between source and translated texts seems primarily the domain of MT itself,
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not MT evaluation.

Thus, it is assumed that only privileged information—information to which the evalua-

tor has access and to which the system does not—is used for automatic evaluation, and that

such information comes exclusively from reference translations. Again, human performance

suggests that reference translations alone are sufficient for the task, but by no means im-

plies that additional data would not provide further benefit. Other sources of information

(alignments, logical representations of the concepts in the original text, etc.) might indeed

be very useful, but do not seem in general to be widely available and so are not considered

here.

1.1.2 Goals

In order to be useful, an automatic MT evaluation metric should provide some cost ad-

vantage while maintaining maximal “correctness” with respect to human evaluations. The

former quality generally follows from the automated nature of the metric, though it is worth

ensuring that the metric is efficiently computable and relies on human-produced data (such

as reference translations) only when that data may be reused from evaluation to evaluation.

More significantly, the latter quality is specified here as a strong and consistent correlation

of metric outputs with quantitative assessments provided by human judges. To evaluate

an evaluation metric, then, requires a corpus of translations, some of which are considered

correct (reference translations), and the rest of which have been rated by humans with

respect to the references (hypothesis translations).

The metric under consideration is first used to generate evaluations of the hypothesis

translations. There then exist a variety of ways to compute correlations of these results

with the numerical judgements of humans, depending on the goal of evaluation. Either a

standard (Pearson) or rank (Spearman) correlation coefficient may be computed, the former

reflecting a general-purpose linear relationship and the latter a reliability with respect to

the ranking of various hypotheses. If evaluation is to serve the purpose of choosing the best

MT system, rank correlation may be the best measure; on the other hand, quantifying the

degree of separation between systems (or between development iterations of a single system)
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may require linear correlation. When evaluating automatic metrics here, both measures are

presented; in general they seem to agree strongly.

A second important factor in computing correlations between automatic metrics and

human judgements involves the size of the translations over which the evaluations have

been conducted. Longer texts are likely to reduce the “noise” of evaluation (both human

and automatic) and, when available, are adequate for the overall assessment of a system

with respect to its peers. However, the correlation of a metric on long texts becomes in-

creasingly less meaningful for purposes of error analysis; a metric that identifies when a

system performs more successfully translating one novel than translating another will nev-

ertheless generally fail to provide much insight into why this may be the case. On the other

hand, a metric that can accurately gauge the quality of short-text translations may clearly

illuminate the individual sentences or phrases with which the MT system has the most

trouble, thereby leading to improvements in its performance. Furthermore, applications

such as confidence estimation rely directly on local automatic assessments [8]. Since short-

text evaluations can be averaged into evaluations of larger texts, a meaningful correlation

for short texts is always preferable, though more difficult to achieve. Here, the standard

textual unit used for evaluating automatic metrics is the sentence, in contrast to the larger

texts often used to justify metrics in the past [3, 4]. This decision is primarily in response

to conclusions drawn by two teams at the 2003 Johns Hopkins Workshop on Speech and

Language Engineering, indicating a need for better sentence-level evaluation metrics [8, 9].

1.2 Previous Work

In recent years, a number of automatic evaluation metrics have been proposed and used for

MT applications, including word error rate (WER), position-independent word error rate

(PER) [2], Bleu score [3], NIST score [4], and the F-Measure [5]. Here, each is described

briefly.
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1.2.1 WER

WER, as applied to MT evaluation, is defined as the edit (or Levenshtein) distance between

the hypothesis translation and a reference translation, where words are the units of insertion,

deletion, and substitution. The minimal number of such operations required to transform

the hypothesis into the reference forms the output of the WER metric. Therefore, the WER

of hypothesis “he walked the dog” with respect to reference “he took the dog for a walk”

is 4, as we can replace “walked” with “took” and then insert the three final words. WER

is easily computed with a standard polynomial-time dynamic programming algorithm, and

the negatively-correlated error value can be inverted to establish an evaluation scale with

positive slope.

When multiple reference translations exist, the evaluation may be based on the minimum

edit distance (most positive evaluation) between the hypothesis and any reference; this is

sometimes referred to as multi-reference word error rate (mWER). WER has historically

been used successfully as a general error metric for speech recognition applications.

1.2.2 PER

PER attempts to address the concern that WER might overly penalize re-orderings of

words that are, in fact, acceptable. For example, “he went to the store” and “to the

store he went” produce a WER of 4 but have arguably interchangeable meanings. PER,

therefore, computes an edit distance in which the re-ordering of words is free; in the PER’s

bag-of-words conception, error rates are at most equal to the WER. PER computation is

simplified and can be achieved by removing all words in the shorter translation from the

longer translation (if they appear) and returning the size of the remaining word-set. The

previous example has a PER of 0. “He walked the dog” and “he took the dog for a walk”

have a PER of 4; the similarity between the words “walk” and “walked” is not considered.

Again, when multiple references are available, the minimum distance with any reference

may be used, and the error value may be inverted to obtain a positive evaluation.

7



1.2.3 BLEU score

Bleu was among the first metrics proposed specifically for the evaluation of MT systems [3].

The intuition applied in the development of Bleu suggests not only that hypotheses with

many words appearing in references should receive positive evaluations (as with WER), but

also that groups of consecutive words appearing in references should be further rewarded,

since such groups may constitute matching “phrases” of some kind. Thus, Bleu is built

on a set of statistics referred to as n-gram precisions. An n-gram is simply a list of n

consecutive words from a text; thus single words comprise unigrams, pairs of consecutive

words bigrams, etc. The trigrams of “he walked the dog,” for example, are “he walked the”

and “walked the dog.”

Measuring the precision of a hypothesis with respect to n-grams requires calculating

the fraction of n-grams in the hypothesis exactly matching some n-gram from one of the

references (only one hypothesis n-gram is allowed to match with any given reference n-gram).

Precisions are computed for n = 1, 2, 3, 4 and labeled p1 through p4.

To calculate the Bleu score, then, precisions are simply combined via a geometric

average, which tends to place emphasis on the typically much smaller p3 and p4 values:

Bleu = BP · exp
(

4
∑

n=1

log pn

4

)

BP is an exponential brevity penalty used to compensate for high precisions that may

result when a hypothesis is very short. The details of computing BP depend on the total

size of the evaluation text [3].

For the example hypothesis “he walked the dog” and reference “he took the dog for a

walk” the Bleu score is 0, since no trigrams or 4-grams match (precisions are 0). This fact

illustrates that Bleu with a maximum n of 4 is most effective when applied to translations of

reasonable size (at least a sentence or more). Limiting n to 2 for the purpose of illustration,

however, the hypothesis unigrams (bold indicating a match in the reference) are “he,”

“walked,” “the,” and “dog.” Thus, unigram precision is 3
4 . Bigrams are “he walked,”

“walked the,” and “the dog,” for a bigram precision of 1
3 . A geometric mean gives

√

3
4 · 1

3 =
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1
2 , and the Bleu score without brevity penalty is 0.5.

When first described, Bleu scores were shown to correlate highly with human judge-

ments (a Pearson coefficient of 0.96) when averaged over large, 50-sentence texts from several

human and machine translators. Bleu has also been used for directly training at least one

state-of-the-art MT system [1].

1.2.4 NIST score

The NIST metric is based upon Bleu, but attempts to correct two potentially problematic

behaviors [4]:

• Not all individual n-grams are equal; some may appear very commonly in a corpus

and serve a general purpose (“he said that”), while others are more rare and, by

implication, specific and important when they do arise (“striking blue fedora”).

• A geometric mean tends to over-emphasize the small precisions for large n-grams.

In attempt to deal with the first point, the NIST score introduces an information weight-

ing scheme based upon n-gram frequencies in a large corpus. (Often, in practice, the set of

all reference translations is used.) If kn is the number of times a particular n-gram is seen

in the corpus, and kn−1 is the number of times the first n− 1 words of the n-gram are seen,

then the information weight for that n-gram is defined as log kn−1

kn
. The information weight

therefore captures an estimate of the self-information of the nth word given the first n− 1.

Information weights are used to produce modified precisions wn, calculated by summing the

information weights of the matching n-grams and dividing by the total number of n-grams

in the hypothesis.

In order to address the second point, the NIST score utilizes an arithmetic mean over the

precisions; as a result, the much larger p1 and p2 values tend to dominate the computation.

The NIST score also adds 5-grams to the computation, and incorporates a modified brevity

penalty BP ′:

NIST = BP ′ ·
5
∑

n=1

wn

5
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Providing a convincing NIST score computation example is difficult due to the informa-

tion weighting scheme; however, given such weights, the calculation is very straightforward,

mirroring the example provided above for Bleu.

The NIST score was originally demonstrated to correlate slightly more strongly and

consistently with human evaluations than Bleu when averaged over large texts, and is

the metric used by the annual NIST MT system competition. However, the additional

requirement of a large, representative corpus for generating information weights makes NIST

potentially more sensitive to its input, and certainly requires greater care in implementation

and set-up.

1.2.5 F-Measure

The F-Measure for MT evaluation was developed partly in response to the uninterpretability

of automatic evaluation metrics such as Bleu or NIST, whose quantified outputs generally

have little absolute meaning [5]. Attempting to combine the intuitions and successes of those

metrics with a more general and standard framework for thinking about the problem of

evaluation, the F-Measure incorporates not only precision but also its counterpart statistic,

recall—the fraction of n-grams in the reference that also appear in the hypothesis.

Precision and recall can be defined in terms of sets; if the hypothesis and reference

are sets H and R of constituent words, then (unigram) precision is |H∩R|
|H| and recall is

|H∩R|
|R| . However, to capture the notion that consecutive matching words might carry more

importance than single words matching in isolation (handled in Bleu and NIST by the use

of n-gram statistics), the F-Measure generalizes the concept of intersection by introducing

“runs.” A run is any set of consecutive words occurring in both the hypothesis and reference,

and the maximum matching between hypothesis and reference is defined as the set M ∗ of

non-conflicting runs that maximizes

s(M) =

(

∑

m∈M

|m|e
)

1

e

for some exponent e, where |m| refers to the number of words in run m. |H ∩R| is replaced
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with s(M∗) to give modified precision s(M∗)
|H| and modified recall s(M∗)

|R| . The F-Measure is

finally computed as the harmonic mean of the two, equivalent to:

2 · s(M∗)
|H|+ |R|

When e = 1, s(M) is equal to the number of words in common, and the F-Measure is

merely the fraction of the total words (including both reference and hypothesis) that co-

occur. When e = 2, the F-Measure can be approximated visually by the square root of the

fraction of area covered by blocks whose diagonals reflect runs when the two translations

are placed on two axes of a grid [5]. Interestingly, however, the greatest correlations with

human judgements have been found when e = 1, suggesting that capturing the influence of

successive matching words in this way is not generally useful to evaluation. Using e = 1

conveniently allows for a straightforward implementation, while e = 2 or higher requires a

non-optimal greedy algorithm as the problem of locating M most likely becomes NP-hard.

For example hypothesis “he walked the dog” and reference “he took the dog for a walk,”

the maximum matching consists of runs “he” and “the dog”, so s(M ∗) = 3 when e = 1 or
√
5 when e = 2. Since |H| = 4 and |R| = 7, the F-Measure is 6

11 or
2
√

5
11 for e = 1 and e = 2,

respectively.
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Chapter 2

Approach

2.1 Motivation

Experiments conducted at the 2003 Johns Hopkins Workshop on Speech and Language En-

gineering have suggested that the currently available automatic machine translation eval-

uation metrics provide insufficient correlation with human judgements when considered at

the level of an individual sentence. Having collected pairs of human judgements (recorded

on a scale from 1 to 5) for 633 hypothesis translations, each with respect to a single,

randomly-chosen reference, the Confidence Estimation team reports that, although inter-

judge correlation is surprisingly low, the correlation between human judges and automatic

metrics is significantly lower [8]. Figure 2.1 illustrates the computed correlations for human

judges and a series of automatic metrics over these 633 single-sentence hypotheses. (Human

judgements are percentile-normalized to compensate for differing evaluation tendencies.)

Although, ideally, evaluation methodologies should be such that humans exhibit higher

inter-judge correlation than seen here (and in similar studies, a sentiment shared by Turian

et al. [5]), these results nevertheless clearly indicate that room for the improvement of

automatic metrics is available at the sentence-level. Correlations of automatic evaluations

averaged over larger texts were much higher, in agreement with previous results [3, 4].

Others have also noted poor automatic metric performance, particularly with respect to

short translations. Turian et al. report, based on experiments rank-correlating the outputs

12
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Figure 2.1: Pearson and Spearman correlations between normalized human judgements
(captured on a scale from 1 to 5) and various human and automatic evaluators. Automatic
metrics are calculated with respect to a set of four human references. The gap between
human and automatic performance is statistically significant at 95%.
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of Bleu, NIST, and the F-Measure with human judgements on translations from 1 to 100

sentences in length, that “even though human evaluation of MT is itself inconsistent and

not very reliable, automatic MT evaluation measures are even less reliable and are still very

far from being able to replace human judgment [5].” The Syntax for Statistical Machine

Translation team from the 2003 Workshop further notes in its final report that the Bleu

metric, used for training and evaluation of the team’s MT system, seems insensitive to

syntactic changes on the sentence level that should be noticeable to human judges [9]. Such

claims provide further anecdotal evidence for the poor correlations of automated evaluators

with human judgements.

An automatic evaluation metric that can effectively determine the quality of a single-

sentence translation thus has a variety of potential applications, among them finer-grained

error analysis during the system design phase and post-translation confidence estimation

using the automatic metric as a target for machine learning [8]. Additionally, if improved

sentence-level accuracy indicates a lower “noise” level than that found with currently avail-

able metrics, we could expect to obtain generally more accurate evaluations from such a

metric. Therefore, the goal of this thesis is the exploration and development of automatic

MT error metrics that correlate more strongly and consistently with human judgements on

a per-sentence basis.

2.2 Machine Learning

In attempting to create new automatic machine translation evaluation metrics that will

address some of the recently observed outstanding difficulties, it is tempting to suggest

the use of general-purpose machine-learning methods as a means of directly approximating

human evaluations. Given a large training set of human-evaluated hypothesis translations

and reference counterparts, it should be possible to directly learn human evaluation scores

as a function of some feature set generated over the input. However, this approach is

problematic for at least two reasons, both deriving fundamentally from the resource problem.

First, machine-learning methods universally adhere to a “more is better” principle with

respect to the size of the training set. To successfully learn evaluation scores would require
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the initial development of a large set of human evaluations and, consequently, consume large

amounts of time and money. If such a project were planned, it would need to involve a very

carefully designed methodology in order to ensure that the evaluation data received is of

the best possible quality and the greatest possible longevity. Given the extensive research

history of human MT evaluation methods and practices, such a task might itself be very

difficult or even prohibitive.

Second, however, even if such a gigantic resource could be created, it would be necessarily

static, representing a fixed distribution of MT outputs on a fixed set of language pairs.

With the constant evolution of MT systems, hypothesis translations judged in the project

evaluations and subsequently used to generate metrics would eventually fail to adequately

represent the population of MT outputs being considered. The training set would then

no longer reflect the true distribution of hypothesis translations; under these conditions,

machine-learning approaches are likely to fail.

It is crucial, then, that any machine-learning approach to automatic MT evaluation

sustain the ability to be retrained and itself reevaluated with respect to modern and rep-

resentative translation samples at regular intervals. In the limit one would like to retrain

whenever a new group of MT systems (or a new iteration of possibilities for a single sys-

tem under development) is to be evaluated, but if doing so requires the process of human

evaluation, then the advantage of the automatic evaluator is neutralized.

2.3 An Alternate Training Criterion

To provide the necessary flexibility, as well as to alleviate the problems inherent in producing

human evaluations of MT outputs, an alternate training criterion is proposed. Instead of

attempting to perform a direct regression on human evaluations of hypothesis translations,

a simpler classification problem might be more feasible: has a given hypothesis translation

been produced by a machine or by a human? This question has the distinct advantage of

being answerable with existing information—training sets can be as large as the corpora for

which we have reference translations, since no human input is necessary to define the target

classification. Furthermore, because human-produced reference translations can be fixed
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for a particular corpus, they remain a one-time startup cost and can be used repeatedly,

regardless of any innovations in the design of MT systems. A metric predicated upon

an ability to distinguish machine translations from human translations, therefore, can be

retrained at will on new distributions of hypothesis MT outputs.

Of course, the classification criterion does not necessarily lend itself to the stated goal

of improving correlation with human evaluators; in this sense it is less direct than the full

regression approach. However, evidence suggests that, at least currently, MT outputs and

human translations are easily distinguished by human evaluators, even when judgements

are made without the knowledge that translations may be from multiple sources (see figure

2.2). Indeed, if MT outputs were of such quality that they could not be distinguished from

human translations, evaluation would no longer be necessary; by definition such an MT

system would be completely successful. Therefore, while less expressive than the regression

criterion, the proposed classification is likely to establish broad performance groups in which

humans reliably outperform machines, and therefore to encourage a macro-scale correlation

with human judgements.

Furthermore, many machine-learning methods for classification do not simply produce

a binary decision for each example, but in fact generate continuous outputs that can be

interpreted as degrees of confidence in the final classification. Using such a method, the

classification criterion actually induces a continuous-scale evaluator for which the output

is some measure of “confidence” that a particular translation was produced by a human.

If, in fact, the question of translation quality is closely related to the believability of a

translation being produced by a human, then such a system might reasonably expect to

achieve success as an MT evaluation metric. Determining the conditions under which such

results are possible is a central question of this thesis.

Finally, a machine-learning approach carries the great advantage of flexibility. In ad-

dressing problems such as the lack of sensitivity to syntactic features or the desire to ensure

that evaluators continue to distinguish modern systems as they improve, new features can

be designed and incorporated into a retrained model. Machine-learning based automatic

metrics, therefore, have the potential to form a large class of customizable, infinitely ad-
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Figure 2.2: ROC curves reflecting the abilities of human evaluation scores, Bleu scores,
and NIST scores to distinguish human translations from machine translations. The x-axis
signifies the fraction of human translations correctly recognized as human, and the y-axis
signifies the fraction of machine translations correctly recognized as machine. A curve
is generated by considering all possible thresholds on a given evaluation metric’s output;
scores above the threshold are assumed to signify a human translation, and scores below
the threshold are assumed machine-produced. The more a curve tends to the upper right,
the greater the ability of the metric in question to distinguish human from machine trans-
lations. (The dotted diagonal is a baseline.) The human judgements come from Workshop
experiments in which participants were told that all hypotheses were machine translations
[8]; the data set actually consists of 633 machine translations and 70 human translations.
Significantly, even without an awareness of the task, humans easily outperform standard
automatic measures.
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justable evaluation solutions. Though the continually changing nature of such a metric

implies that its scores will hold little absolute meaning, the advantages with respect to

detailed error analysis and adaptability might be significant.
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Chapter 3

Implementation

3.1 Data Sets

Data for the training and testing of machine-learning based metrics are drawn from the test

corpus and output lists of the alignment template statistical machine translation system

that obtained the best results in the 2002 and 2003 DARPA MT evaluations and was a

subject of research at the 2003 JHU Workshop [9]. The system is trained to produce

Chinese to English translations of news articles that typically cover current political and

economic events, and although the system consistently performs at high levels relative to

other current MT systems, it is worth noting that the translations it produces are often poor,

lacking in fluency despite being sometimes comprehensible upon extended consideration. A

typical output (formatted for readability) is:

As soldiers to fire on the spot, “the sudden shot and killed the Takhar and

another from Hamas and another person was seriously injured, and there have

been sent to a nearby hospital for emergency treatment.”

While the machine translation system considered is believed to represent the current state-

of-the-art in Chinese to English MT, the development of more successful systems in the

future will likely have a large impact on the parameters meaningful to evaluation.

In order to apply general machine-learning methods, a series of examples must be drawn

from the data, each consisting of an input and an output; general training algorithms can
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then be applied for learning to predict the output given the input. Recalling that the input

to an evaluation metric is an (n+ 1)-tuple (e, e∗1, e
∗
2, . . . , e

∗
n) containing a hypothesis and n

references, an input here consists of an English hypothesis translation e based on a single

Chinese source sentence, produced either by the above MT system and drawn randomly

from a 100-best list or by a human reference translator, as well as three additional human

reference translations e∗1, e
∗
2, e

∗
3 of the same sentence. Care is taken to ensure that the

hypothesis is never produced by the same translator as any of the references. The output

used for the modified training criterion is a simple binary variable indicating whether the

translation is produced by a machine or by a human. Due to the design of the classification

problem, the output can is determined by the source of the hypothesis, needing no manual

assistance. If direct regression were attempted, on the other hand, human evaluations of

each hypothesis would be required.

In total, 21,144 examples (input/output pairs) have been extracted from the system, half

of which contain machine-produced hypotheses and half of which contain human-produced

hypotheses. These examples are split approximately 2:1 into training and validation sets

of 14,120 and 7,024, respectively; an equal number of human and machine hypotheses are

maintained in each set. The machine-learning layer is eventually optimized over the larger

training set and then tested for classification accuracy on the validation set. The final

assessment of any resulting metric, however, depends not on its classification abilities but

on its continuous-output correlation with human judgements. For measuring this quality,

a third data set is used—the test set—consisting of 633 hypothesis translations, all pro-

duced by the above MT system and evaluated by two independent human judges during an

experiment at the 2003 JHU Workshop.

In the evaluation experiment, users familiar with natural-language research were asked

to judge the quality of hypothesis translations with respect to single references produced

by humans. Ratings were collected on a scale from 1–5, which was described to the users

as in figure 3.1. To compensate for nevertheless differing interpretations of the evaluation

scale (which are evident), ratings are percentile-normalized to the users reporting them.

Each rating is assumed to carry a more positive evaluation than all lower ratings as well as
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Please rate the quality of a given hypothesis translation with

respect to the reference on a scale from 1 to 5 as follows:

Reference ex: bob walked the dog.

1: Useless; captures absolutely none of the reference’s meaning.

ex: franklin is a doctor.

2: Poor; contains a few key words, but little or no meaning.

ex: dog banana walk.

3: Mediocre; contains some meaning, but with serious errors.

ex: the dog walked bob.

4: Acceptable; captures most of the meaning with only small errors.

ex: bob walk the dog.

5: Human quality; captures all of the reference’s meaning.

ex: bob took the dog for a walk.

Figure 3.1: The five point evaluation scale used to collect human judgements for 633
machine-produced hypothesis translations.

half of the equal ratings given out by that user; for example, suppose users A and B rate

hypotheses with the following frequencies:

Rating 1 2 3 4 5 total

Frequency (user A) 6 16 26 32 20 100

Frequency (user B) 18 36 30 16 0 100

Then a rating of 3 by user A is normalized to (6 + 16 + 26
2 )/100 = 35%, while a rating

of 3 by user B is normalized to (18 + 36 + 30
2 )/100 = 69%. These normalizations produce

results corresponding to the notion that a rating of 3 by user B is in reality much higher

praise than the same rating given by an empirically kinder user A.

Rather than averaging the two independent ratings given to each hypothesis, the ratings

are split randomly into two sets, each with a single rating for every hypothesis. One of

these data sets is considered the “true” human judgement with which high correlation by a

metric is taken to mean success, while the other is a “human” evaluation metric to which

automatic metrics can be compared. (Note that, though generated in the same manner

as the true human judgements, the human metric does not necessarily represent the best

possible performance, since it is only based on a single rating for each hypothesis. A

metric based on ratings averaged across many users would likely perform even better due

to decreased noise.)
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3.2 Features

Examples as described above cannot be fed directly into a machine-learning layer with

any hope of success, however, simply because linguistic objects such as natural language

translation hypotheses are too complex to allow for direct generalization based on any

reasonable number of training examples. One way to effectively reduce the “dimensionality”

of such objects is to manually preprocess them in order to extract a set of numeric features

expected to be most salient for the classification task. Only the feature values, then, are

passed as inputs to the machine-learning layer, which is not allowed to directly examine the

various translations. The result is potentially improved generalization power at the cost of

a strictly less informative input space.

Here, two major sets of features are considered; the differing results produced by each are

discussed in the following chapter. The “basic” feature set consists of very simple statistics,

many taken from the definitions of known automatic MT evaluation metrics like Bleu and

WER. The basic set includes the following features:

• The minimum and maximum ratio of hypothesis length to reference length over the

three references.

• Unmodified n-gram precisions for n =1–5, calculated as described in section 1.2.3.

• Word error rate (WER), calculated as described in section 1.2.1.

• Position-independent word error rate (PER), calculated as described in section 1.2.2.

The basic feature set is designed primarily to determine if a machine-learning approach

can make better use of the information already incorporated heuristically by current metrics.

The second, “extended” feature set includes all those features in the basic set, as well

as additional features derived from statistical parses of the input hypothesis and reference

translations using Collins’s model 3 parser [12], with tagging by Ratnaparkhi’s MXPOST

tagger [13]. The probability score returned by the parser is itself used as a feature value,

since human translations might be expected to have higher-probability parses than their

machine-generated counterparts; it appears in the extended set both in raw, absolute form
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and as a ratio with the parse scores of the references. (Minimum and maximum such ratios

over the three references are reported.) The remaining parse-based features are pairs of the

form:
(

min
i

ce
ce∗

i

, max
i

ce
ce∗

i

)

,

where ct is the number of times a specific syntactic nonterminal occurs in translation t

according to the parser. Such features are computed for each of the following nonterminals:

ADJP, FRAG, NP, NPB, PP, SBAR, and VP. For some sentences (particularly long, jumbled

machine hypotheses), the parser fails entirely; in these situations, counts of 0 are reported

for all nonterminals. All references, however, are parsed successfully, so division by zero

does not occur. The extended feature set is designed to determine how syntactic information

might aid a machine-learning based evaluation metric.

3.3 Learning

Many general methods exist for learning a classifier based on some set of labeled training

instances; in order to create a continuous-scale evaluation metric from the simple classifica-

tion criterion, however, a learning method that produces some form of “confidence” value

must be utilized. In particular, constructs such as standard decision trees are not useful; a

binary classification provides very limited information on the quality of a particular trans-

lation. Instead, support vector machines (SVMs) are used here due to the particularly nice

conception of classification they provide, considering it as a problem of linear separation in

some feature space.

SVMs operate like perceptrons, determining margin-maximizing linear separators be-

tween classes, but they allow for highly non-linear classification boundaries by performing

linear classification in a potentially complex feature space [10]. The classification of a test

example is determined by the side of the feature-space separator on which it falls. After

training by optimizing a quadratic constraint problem, the SVM contains a separator de-

fined by x for which 〈w, x〉 = b for a vector w, a constant b, and an inner product 〈·, ·〉 in

the feature space (calculated indirectly with a kernel function). Thus, sign(〈w, x〉 − b) de-
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termines the SVM’s classification of an input x, in this case deciding whether a translation

has been produced by a human or by a machine.

However, the separator is more than a simple classifier; it acts as an organization for the

space of translations, defining the half-spaces of machine and human produced translations

as well as a boundary subspace in which translations are equally human and machine-like.

By computing not only the side of the boundary on which a particular example falls, but

also the distance between the example and that boundary (removing the operator sign in

the expression above), a measure of “confidence” is obtained. Examples buried deep in the

machine half-space (examples for which 〈w, x〉−b is very positive or very negative, depending

on the sign of the classifier) are perhaps very clearly machine produced, while those close to

the boundary might have qualities seen more commonly in translations produced by humans,

even if they still fall into the “machine” class. Those machine-produced examples that

appear in the human half-space, on the other hand, have successfully fooled the classifier,

and are likely to be of very high quality. A SVM can be used to define, therefore, a measure

of confidence that is conceptually justified based on a simple classification criterion. It

is worth noting that, because a SVM attempts to maximize the margin of its classifier

(equivalent to minimizing ||w||), irrelevant features should be appropriately ignored in the

inner product and have little influence on a particular example’s distance from the separator.

The Torch3 machine learning library implementation of SVMs for classification is used

here in a slightly modified form [11]. Gaussian kernels are employed, and the quadratic

constraint problem is optimized until the Karush-Kuhn-Tucker conditions are satisfied to

within 0.01 error. Two parameters remain to be tuned: C, the trade off between margin

maximization and error minimization, and σ, the standard deviation of the Gaussian kernel.

The effects of adjusting these parameters are discussed in the following chapter. Once an

SVM has been trained on the training set, its classification accuracy is measured on the

validation set, and its correlation with human judgements is found by computing the Pearson

and Spearman correlation coefficients between 〈w, x〉 − b and the true human evaluations

for all examples x in the test set.
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Chapter 4

Results

The methods described produce an automatic machine translation evaluation metric that

significantly outperforms current automatic metrics, as measured by the sentence level Pear-

son and Spearman correlation coefficients of the metric outputs with human judgements for

the test set of 633 machine-produced hypotheses. Additionally, results demonstrate that

given a particular feature set, optimizing for the modified training criterion in fact strongly

encourages correlation with the true evaluations, implying that expensive human judge-

ments are not required in general. However, different feature sets may produce metrics

with widely differing performance characteristics; feature selection therefore seems to be a

key to reliably producing machine-learning based evaluation metrics. The exact nature of

the relationship between features and ultimate performance is left for future research.

Statistical significance measures over correlation coefficients given in the following sec-

tions are derived using Fisher’s z′ transformation, which converts the skewed sampling dis-

tribution of Pearson correlation coefficients to a normal distribution from which the usual

confidence intervals can be calculated.

4.1 Improved Correlation with Human Judgements

SVMs using Gaussian kernels define a class of models in which the specific model achieving

best performance must be located; in order to choose values for the parameters C and

σ (described in section 3.3) a grid search is employed. For each parameter, a discrete
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set of values is defined manually and laid along a unique axis. The resulting “grid” (two

dimensional in this case) consists of all possible parameter value combinations, and for each

combination a SVM is trained using the entire training set. The performance of each model

is subsequently evaluated on the validation set by computing the percentage of hypotheses

that are correctly classified as human or machine-produced—“classification accuracy”—

and the best model is selected. If performance levels between adjacent models on the grid

are significantly discontinuous, the grid may be refined and the process repeated until a

satisfactory minimum is found.

Using the basic feature set, maximum validation performance is attained at SVM/kernel

parameter values of C = 50 and σ = 10. The resulting overall classification accuracy is

64.4%, with 58.7% accuracy classifying human translations and 70.0% accuracy classifying

machine translations. Classification accuracy, however, does not reflect the success of the

metric; instead the desired characteristic is a strong correlation with human judgements.

For the selected model, the Pearson correlation coefficient with respect to human evaluations

over the test set is 0.38, and the Spearman correlation coefficient is 0.36.

Figure 4.1 shows the levels of correlation obtained by a single human judge (the human

metric), the SVM metric using the optimal parameters, and various current automatic

MT evaluation metrics. Raw data are presented in table 4.1. The SVM-based metric

outperforms all other automatic evaluators at 95% significance, indicating that it is a more

reliable sentence-level translation quality estimator. The SVM-based metric fails to reach

the performance level of a human, but makes up approximately half of the gap between the

best previously known automatic metrics and the human metric.

Note that in figure 4.1, the correlation results of the NIST score have not been included.

Due to the dependence of the NIST metric on a corpus from which information weights can

be generated, no single “true” NIST score exists. Perhaps as a result of such considerations

(e.g., an inadequate corpus), the computed NIST scores exhibit a misleadingly low corre-

lation with human judgements, and have been excluded for that reason. Previous work,

however, suggests that the NIST metric should perform comparably to other metrics such

as Bleu and FMS [5, 8].
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Figure 4.1: Pearson and Spearman correlation coefficients for the human metric, a machine-
learned SVM metric, and four standard automatic metrics. The gap between the machine-
learned metric and the other automatic metrics is statistically significant at 95%, as is the
gap between the human and machine-learned metrics.

Also note that the correlations reported here are lower than those noted by Foster et al.

and reproduced in figure 2.1, though the same 633 test examples and human judgements

are used in both cases. The apparent discrepancy is due to the fact that the prior work con-

sidered metrics computed with respect to four reference translations, while here only three

references are used so that the fourth may act as a human hypothesis. The meaningfulness

of any metric naturally decreases as the example set of acceptable translations shrinks.

Metric Pearson Coefficient Spearman Coefficient

Human 0.4633 0.4528
SVM(50,10) 0.3771 0.3563

WER 0.2909 0.270
FMS 0.2861 0.2772
PER 0.2794 0.2664
Bleu 0.2537 0.2367

Table 4.1: Data for figure 4.1
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4.2 Success of the Modified Criterion

In addition to producing an automatic MT evaluation metric that outperforms current

automatic metrics, however, results show that the classification criterion is also generally

successful as an approximation to the goal of correlation with human judgements. For

a modified criterion to be successful, procedures that optimize for that criterion must be

shown to also optimize for the desired or true criterion; in this case, knowing that im-

proving the classification accuracy of a SVM model tends to improve its correlation with

human judgements should allow a metric designer to do without an expensive test set and

tweak models to improve classification accuracy with faith that the desired effect will result.

Figure 4.2 shows the strong empirical relationship observed between classification accuracy

and human judgement correlation by plotting the two performance measures against each

another for the entire grid search space of SVMs using the basic feature set. Significant

positive correlation is apparent (Pearson coefficient of 0.855), indicating that tweaking SVM

parameters to maximize classification accuracy tends to encourage correlation with human

judgements as well.

In fact, this result justifies the somewhat blind model selection performed earlier. The

chosen model exhibits not only the highest classification accuracy—observable using only the

validation set, which is generated automatically—but also a human judgement correlation

within 1.5% of the best achieved by any SVM using the basic feature set. This kind of ability

to choose a successful metric without relying on resource-intensive human judgements is the

key to the approach: once the reliability of the modified criterion is established, new metrics

can be implemented, optimized, and applied to modern MT systems without requiring any

additional data collection.

4.3 Sensitivity to Features

Upon performing similar experiments using the extended feature set, however, a striking

characteristic emerges. As seen in figure 4.3, models trained on the larger feature set

achieve a higher overall classification accuracy than those trained only on the basic features,
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Figure 4.2: Automatic metric correlation with human judgements versus classification ac-
curacy for a wide range of learning parameters. The results suggest that training for the
simplified classification criterion induces the strong correlation necessary for a successful
evaluation metric. The meta-correlation between classification accuracy and Pearson cor-
relation results for SVM classifiers is 0.855, significant at 99%. Raw data are available in
appendix A.
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Figure 4.3: Automatic metric correlation with the human judgements versus classification
accuracy for a wide range of learning parameters and two different feature sets. The results
suggest that, though training for the classification criterion induces correlation in both
cases, the specific feature set is a crucial factor in determining the success of the metric.
Raw data are available in appendix A.

as should be expected; furthermore, the same positive correlation between classification

accuracy and human judgement correlation is clearly apparent for these models as a group.

However, the highest level of human judgement correlation reached is less than half that

attained by the models trained on basic features; the seemingly linear relationship between

the two performance measures is shifted toward high classification accuracy and low human

judgement correlation when the extended feature set is employed. Therefore, while the

modified criterion continues to encourage parameter optimization over a fixed set of features,

the specific set of features in use can apparently have a large impact on the range of

achievable performance. Parse-based features, in particular, have led the model to seriously

degraded correlation with human judgements.
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While the opaque nature of SVM classifiers makes it difficult to discern the exact cause

of the problem, intuitively it seems possible that the additional features include informa-

tion useful for classification and yet irrelevant to human evaluators. For example, it may be

that the MT system, for whatever reason, produces outputs that parse with an inordinate

number of SBARs compared to the references—a fact that the training phase is likely to

exploit—but that humans evaluate with no particular awareness of this phenomenon; per-

haps SBARs do not perceptually degrade the quality of the sentence. Such an explanation

is particularly convincing for the parse-based features included in the extended set since

parsing the disfluent outputs from the MT system can be difficult or impossible in many

cases. The tagger and parser employed have been trained on the assumption that structure

exists within their inputs; their job is merely to locate it. However, if such structure does

not exist at all then the behavior of these models may be unpredictable, or worse, patho-

logical. Indeed, the exploitable information might not come from the MT system actually

producing many SBARs, but from the tendency of the tagger/parser combination to produce

many SBARs when there is little actual structure to be deduced.

It is not currently clear how to address these issues. One suggestion might be that they

do not need addressing at all—even if the results of the metric do not currently correlate with

human judgements, there can be no harm in encouraging MT systems to produce outputs

that appear more like human outputs; systems might reasonably reduce the number of SBARs

produced even if the perceptual effect for humans is negligible. Once these pathological

behaviors with respect to the feature set are worked out, then, a metric could be retrained

and would no longer exhibit the poor correlation seen here. It is also possible, however, that

such a method would lead to much effort wasted on addressing issues that do not matter,

or to circular system adjustments with which errors would merely move from one type to

the next without being truly removed. In any case, feature selection is clearly an important

part of applying machine learning methods to the problem of automatic MT evaluation.

Though one successful feature set is identified here, current work aims to understand more

generally the interactions between feature sets and correlation performance.
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Chapter 5

Conclusions

Applying machine learning to the problem of machine translation evaluation is primarily

difficult because the desired human judgement targets are too expensive to make available

in large quantities, particularly as the population of MT outputs may be changing con-

stantly. The solution proposed here is to approximate human judgements with a binary

decision variable that simply reports whether a translation was produced by a human or

by a machine, thereby eliminating the need for user data collection. Results indicate that

this approach is very effective given certain feature sets, greatly improving sentence-level

correlation between metric scores and human judgements over current automatic metrics,

and that for a fixed set of input features, the classification criterion is strongly linked with

such correlation. Thus, the method provides the ability to optimize for classification and

obtain improved correlation even without access to a human evaluated test set.

5.1 Future Work

Other learning methods might be applied to the problem, however. Unsupervised learning

could be used produce an organization of the data in which translations of a similar quality

are placed near each other; such a map could then be translated to a continuous metric with

only a few human evaluations as reference points. More generally, active learning methods

might allow a variable cost/performance trade off, using as much evaluation data as is

available while still taking advantage of a large unlabeled training set. These methods have
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the potential, however, to discover patterns in the data that are irrelevant to the task, and

might end up grouping translations by some unknown property. Whether such a property

drawn from the data would be any more or less informative than that of having been

produced by a human or machine (effectively enforced here as the property of organization)

is an open question.

Furthermore, the approach outlined here appears to have a strong dependence on the

feature set with which it is provided, particularly as the training criteria is an approximation

to the desired result. As discussed above, this effect may or may not present a serious

problem, but it deserves a deeper examination. Current work involves training models on

single features to see if features can be selected automatically or characterized in some way

so as to assemble the best possible collection, as well as performing user studies to determine

if the low correlation exhibited by the extended feature metric in fact produces noticeably

worse real-world translation judgements. Another avenue for research might include training

metrics over a larger range of system outputs, e.g., from many different MT systems, as

perhaps greater variation in hypothesis translations would reduce exploitation of individual

pathological behaviors by the training algorithm.

A final aspect of machine learning approaches to MT evaluation that deserves attention

is the degree of customization that they potentially provide in addition to merely improved

performance. While the focus here has been on improving correlation with human judge-

ments, system designers might also find it useful to add features tuned specifically to issues

of concern, thereby improving the metric’s sensitivity to particular aspects of translations.

For example, the Syntax for Statistical MT team at the 2003 Johns Hopkins workshop ob-

served that Bleu was not particularly sensitive to syntactic improvements [9]; a learning-

based metric, on the other hand, could be designed specifically to take syntax into account,

thereby allowing finer-grained error analysis than is currently possible.

As statistical learning and otherwise data-driven methods in MT become more power-

ful, the potential for receiving valuable guidance from accurate, reliable, low-level automatic

evaluation metrics is growing dramatically, and learning approaches to MT evaluation hold

the promise of improved performance, as demonstrated here, and increased customization.
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With the gains in flexibility and power over heuristic methods, however, comes a greater

responsibility for understanding and controlling the metric’s behavior, whether through the

evaluation of many example hypothesis translations or the careful selection of features. In-

telligent human input, then, remains paramount in ensuring that any automated evaluation

metric is relevant and robust.
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Appendix A

Data Tables

σ

C

10 25 50 75 100

5
a. 0.6391
b. 0.3772
c. 0.3529

a. 0.6392
b. 0.3734
c. 0.3450

a. 0.6287
b. 0.3561
c. 0.3301

a. 0.6206
b. 0.3320
c. 0.3003

a. 0.6147
b. 0.3376
c. 0.2963

10
a. 0.6437
b. 0.3789
c. 0.3558

a. 0.6395
b. 0.3732
c. 0.3438

a. 0.6280
b. 0.3652
c. 0.3389

a. 0.6179
b. 0.3322
c. 0.3007

a. 0.6116
b. 0.3431
c. 0.2950

25
a. 0.6421
b. 0.3821
c. 0.3589

a. 0.6390
b. 0.3731
c. 0.3456

a. 0.6039
b. 0.3499
c. 0.3246

a. 0.6170
b. 0.3327
c. 0.2992

a. 0.6025
b. 0.3248
c. 0.2860

50
a. 0.6441
b. 0.3771
c. 0.3563

a. 0.6385
b. 0.3695
c. 0.3435

a. 0.5700
b. 0.3208
c. 0.2915

a. 0.6072
b. 0.3027
c. 0.2785

a. 0.6012
b. 0.2951
c. 0.2723

75
a. 0.6361
b. 0.3734
c. 0.3514

a. 0.6330
b. 0.3582
c. 0.3304

a. 0.5441
b. 0.2963
c. 0.2789

a. 0.5928
b. 0.2609
c. 0.2518

a. 0.6009
b. 0.3100
c. 0.2728

100
a. 0.6348
b. 0.3583
c. 0.3433

a. 0.6313
b. 0.3542
c. 0.3263

a. 0.5434
b. 0.2259
c. 0.2022

a. 0.5974
b. 0.2464
c. 0.2362

a. 0.5961
b. 0.2681
c. 0.2526

150
a. 0.6203
b. 0.2948
c. 0.2718

a. 0.6039
b. 0.3279
c. 0.2957

a. 0.5581
b. 0.1831
c. 0.1434

a. 0.5575
b. 0.2098
c. 0.2090

a. 0.5913
b. 0.2870
c. 0.2555

Table A.1: Classification accuracy (a), Pearson correlation with human judgements (b),
and Spearman correlation (c) for each SVM grid point using the basic feature set.
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σ

C

25 40 50 55 60 65 70 75 100

5
a. 0.6219
b. 0.0458
c. 0.0378

a. 0.6311
b. 0.0508
c. 0.0460

a. 0.6323
b. 0.0675
c. 0.0686

a. 0.6303
b. 0.0699
c. 0.0727

a. 0.6287
b. 0.0705
c. 0.0765

a. 0.6313
b. 0.0633
c. 0.0746

a. 0.6294
b. 0.0630
c. 0.0766

a. 0.6286
b. 0.0572
c. 0.0726

a. 0.6270
b. 0.0493
c. 0.0694

10
a. 0.6209
b. 0.0709
c. 0.0631

a. 0.6441
b. 0.0765
c. 0.0751

a. 0.6427
b. 0.0908
c. 0.0887

a. 0.6397
b. 0.0918
c. 0.0944

a. 0.6412
b. 0.0928
c. 0.0981

a. 0.6401
b. 0.0922
c. 0.1041

a. 0.6408
b. 0.0833
c. 0.1043

a. 0.6424
b. 0.0775
c. 0.1004

a. 0.6415
b. 0.0739
c. 0.0951

25
a. 0.6310
b. 0.0647
c. 0.0542

a. 0.6509
b. 0.1106
c. 0.1079

a. 0.6560
b. 0.1129
c. 0.1160

a. 0.6535
b. 0.1173
c. 0.1226

a. 0.6543
b. 0.1162
c. 0.1230

a. 0.6508
b. 0.1217
c. 0.1347

a. 0.6495
b. 0.1160
c. 0.1321

a. 0.6540
b. 0.1139
c. 0.1362

a. 0.6489
b. 0.0987
c. 0.1307

50
a. 0.6276
b. 0.0623
c. 0.0581

a. 0.6526
b. 0.1284
c. 0.1279

a. 0.6596
b. 0.1164
c. 0.1239

a. 0.6580
b. 0.1334
c. 0.1406

a. 0.6600
b. 0.1316
c. 0.1386

a. 0.6599
b. 0.1365
c. 0.1455

a. 0.6582
b. 0.1333
c. 0.1416

a. 0.6577
b. 0.1278
c. 0.1432

a. 0.6585
b. 0.1338
c. 0.1613

75
a. 0.6243
b. 0.0606
c. 0.0646

a. 0.6562
b. 0.1242
c. 0.1217

a. 0.6592
b. 0.1261
c. 0.1318

a. 0.6639
b. 0.1320
c. 0.1367

a. 0.6609
b. 0.1420
c. 0.1464

a. 0.6627
b. 0.1342
c. 0.1387

a. 0.6573
b. 0.1345
c. 0.1404

a. 0.6560
b. 0.1276
c. 0.1415

a. 0.6595
b. 0.1285
c. 0.1519

100
a. 0.6233
b. 0.0625
c. 0.0722

a. 0.6533
b. 0.1130
c. 0.1069

a. 0.6642
b. 0.1290
c. 0.1395

a. 0.6643
b. 0.1321
c. 0.1381

a. 0.6696
b. 0.1412
c. 0.1474

a. 0.6602
b. 0.1359
c. 0.1411

a. 0.6619
b. 0.1395
c. 0.1445

a. 0.6592
b. 0.1396
c. 0.1455

a. 0.6570
b. 0.1483
c. 0.1607

150
a. 0.6216
b. 0.0684
c. 0.0832

a. 0.6522
b. 0.0893
c. 0.0857

a. 0.6629
b. 0.1174
c. 0.1268

a. 0.6660
b. 0.1274
c. 0.1381

a. 0.6634
b. 0.1567
c. 0.1629

a. 0.6669
b. 0.1399
c. 0.1498

a. 0.6600
b. 0.1382
c. 0.1435

a. 0.6597
b. 0.1516
c. 0.1552

a. 0.6529
b. 0.1346
c. 0.1489

Table A.2: Classification accuracy (a), Pearson correlation with human judgements (b), and Spearman correlation (c) for each SVM
grid point using the extended feature set.
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