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Abstract

We consider the problem of reconstructing a symmetric matrix from its principal minors,
which has several applications in information theory and statistical modeling. We develop a
theory of symmetric matrices with equal corresponding principal minors based on a simple
equivalent property due to Oeding (2011). We then use this theory to provide a method for
choosing a canonical representative from the class of all symmetric matrices with specified
principal minors. Finally, we provide an efficient algorithm for computing this canonical
representative given its principal minors as input.
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1. Introduction

Given an n×n symmetric complex matrix H , it is trivial but time consuming to compute
all of its principal minors. In the inverse problem, known as the symmetric principal minor
assignment problem, we are given an oracle that produces any requested principal minor of a
symmetric matrix H in constant time, and we are asked to compute H . At first glance, this
inverse problem appears significantly more difficult. Our aim in this paper is to show that it
is not: the reconstruction may be performed in polynomial time with a graph-search based
algorithm.

The assignment problem has attracted some attention in recent years. Griffin and
Tsatsomeros (2006b) proposed an algorithm which is guaranteed to work if the matrix to be
reconstructed is off-diagonal full. Among other conditions, this requires that no off-diagonal
entry be equal to zero. Furthermore, their algorithm has a running time of O(n5) and involves
multiple matrix inversions, which raises concerns about its numerical stability. Holtz and
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Sturmfels (2007) approached the problem algebraically and showed that a vector of length 2n,
assuming it strictly satisfies the Hadamard-Fischer inequalities, is the list of principal minors
of some symmetric matrix if and only if it satisfies a certain system of polynomial equations.
Oeding (2011) later proved a more general conjecture of Holtz and Sturmfels (2007), removing
the Hadamard-Fischer assumption and set-theoretically characterizing the variety of principal
minors of symmetric matrices. Oeding (2011) also observed that this characterization can
in principle be used to solve the assignment problem by considering all principal minors of
order at most three. However, it is not obvious that this approach can be used to construct
a polynomial-time algorithm, since it involves maintaining an exponentially-sized set of
candidate matrices. It also requires O(n3) queries to the principal minor oracle.

Our algorithm solves the symmetric principal minor assignment problem in worst-case
O(n3) time, and it can be significantly faster for sparse matrices: if there are m nonzero
entries in H, then the running time is O(n2 + mn). The algorithm involves no matrix
inversions. It requires O(n2) queries to the principal minor oracle; since Ω(n2) oracle queries
are required to determine the magnitudes of the off-diagonal elements, this is asymptotically
optimal. A MATLAB implementation of our algorithm is available to download1. In deriving
our algorithm, we also address the question of when two symmetric matrices have equal
corresponding principal minors, providing elementary proofs for some of the results of Oeding
(2011).

We stress that our algorithm does not guarantee that the oracle is consistent with the
reconstructed matrix; rather, we guarantee that if the oracle is consistent with any matrix, it
must be the matrix output by the algorithm. Actually verifying the consistency of the oracle
requires generating every principal minor of the matrix, which inherently requires exponential
time (but no more; see Griffin and Tsatsomeros (2006a)). However, in certain applications we
can be sure that the oracle is consistent with some symmetric matrix, and so our algorithm
is sufficient for these problems.

We see two primary applications of a solution to the symmetric principal minor assigment
problem. The first is deciding whether a vector of length 2n is the entropic vector of some
multivariate Gaussian distribution. Any solution to this problem has potential applications
in information theory and multivariate statistics (Hassibi and Shadbakht, 2007).

The second is estimating the parameters of a determinantal point process over a finite set
(see Borodin (2011); Hough et al. (2006); Kulesza and Taskar (2012) and references therein).
In brief, a determinantal point process Y is a random subset of [n] characterized by a matrix
K with the property that P (A ⊆ Y ) = det (KA) for all A ⊆ [n]. Not all determinantal point
processes are characterized by symmetric matrices, but many interesting classes are, including
the class of structured determinantal processes defined in Kulesza and Taskar (2012). Our
algorithm allows us to reconstruct this matrix K given knowledge of its principal minors.

1http://www.eecs.umich.edu/~kulesza/code/sym_assignment.tgz
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Example: 3× 3 Matrices

Consider the problem of reconstructing a 3× 3 matrix from its principal minors. Suppose
that we are given an oracle for the principal minors of

H =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 .

We have det
(
H{i}

)
= hii for each i, so we can reconstruct the diagonal of H exactly with

three queries to the oracle. We also have det
(
H{i,j}

)
= hiihjj − h2ij for each i 6= j, so we can

find the squares of the off-diagonal elements with an additional three queries. However, we
get no information about the signs of these elements. We must therefore examine one more
principal minor—the full determinant:

det (H) = h11h22h33 + 2h12h13h23 − h11h223 − h22h213 − h33h212 .

We can now infer the value of the product h12h13h23; if it is nonzero, we know from its sign
whether an even or odd number of the off-diagonal elements are negative. By inspection,
any assignment of signs that preserves this parity gives the same set of principal minors, so
we have fully characterized the desired set of matrices. On the other hand, if the product
of the off-diagonal elements is zero, then any combination of signs is consistent with the
determinant.

For n× n matrices, we can again use n+ n(n− 1)/2 queries to find the diagonal elements
and the magnitudes of the off-diagonal elements. However, we need a general technique
for assigning signs to the off-diagonal elements. It turns out that this can be achieved
using a graphical representation of the matrix H in which the natural generalization of the
three-element product is a simple chordless cycle. Our algorithm uses a systematic exploration
of cycles on a spanning tree of this graph to infer the signs of off-diagonal elements. This
framework not only allows us to reconstruct a matrix H ′ with the same principal minors as
H , but also to fully characterize the set of all such matrices.

The remainder of this paper is organized as follows. In Section 2, we introduce our
notation and terminology. In Section 3, we describe a necessary and sufficient condition for
two symmetric matrices to have equal corresponding principal minors, and we show how to
choose a canonical representative from the set of matrices with given principal minors. In
Section 4, we give a general algorithm for the symmetric principal minor assignment problem.
Finally, we develop a more efficient variant of our algorithm in Section 5. Appendix A shows
how our algorithm operates on an example 6× 6 matrix.

2. Notation and Terminology

2.1. Matrices

We will use n to denote the number of rows of a square matrix, [n] to denote the set
{1, 2, . . . , n}, and Sn (C) to denote the set of n×n complex symmetric matrices. The principal
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submatrix of H ∈ Sn (C) corresponding to α ⊆ [n] will be denoted Hα, and we observe the
convention that det(H∅) = 1. All matrices are assumed to be symmetric unless otherwise
stated.

We say that H and K are determinantally compatible if hii = kii for all i and |hij| = |kij|
for all i 6= j. We further say that H and K are determinantally equivalent, and write

H
det≡ K, if det(Hα) = det(Kα) for all α ⊆ [n]. Any pair of determinantally equivalent

matrices are determinantally compatible, but the converse is not true.

We also say that two matrices H and K are D-similar, and write H
D∼ K, if there is

some diagonal matrix D with nonzero entries in {−1, 1} such that H = DKD−1. The set of
all such n×n matrices will be denoted as Dn

±. We observe that Dn
± is an Abelian group under

matrix multiplication, so its actions on Sn (C) correspond to symmetries: H
D∼K if and only

if H is in the orbit of K under the action of Dn
± on Sn (C) defined by D ·K = DKD−1.

This symmetry is easy to describe: it is simply invariance with respect to the direction of the
coordinate axes. As above, any pair of D-similar matrices are determinantally compatible,
but the converse is not true.

2.2. Graphs

While we can describe our algorithms and results purely in terms of matrices, there is an
equivalent, cleaner description in graph-theoretic terms. We will use n to denote the number
of vertices in a graph G, and m to denote the number of edges. wij denotes the weight of the
edge between vertex i and vertex j.

A rooted graph is a graph G in which some vertex r has been designated as the root.
While this does not imply any special properties of G, many graphical algorithms, including
ours, assume a designated root node.

A path P in a graph G is a sequence of vertices
{
vij
}|P |
j=1

such that G contains the edges(
vij , vij+1

)
for j = 1, . . . , |P | − 1. The set of vertices along a path P is denoted supp (P ). A

graph is connected if there is a path between any two vertices, and is otherwise partitioned
into a set of connected subgraphs referred to as connected components.

A tree is a graph T such that there is a unique path between any two vertices of T . If G
is a connected graph, a spanning tree T is a subgraph of G such that T is a tree, each vertex
of G is present in T , and each edge of T is present in G. If G is not connected, we can define
a spanning forest, which is the union of a collection of spanning trees for each connected
component of G. If T is a spanning tree of a rooted graph, then the depth of a vertex v is
the length of the path in T from the root to v.

If G contains a path P and also contains the edge
(
vi|P | , vi1

)
, then we say that G contains

the cycle C = P . If the vertices in a cycle C are distinct, C is called a simple cycle. If there
is an edge between two vertices of a cycle which is not contained in the cycle itself, this edge
is referred to as a chord. A cycle with no chords is called chordless. If C does contain a chord
e, then there are two cycles C1 and C2 such that supp (C1) ∪ supp (C2) = supp (C) and
supp (C1) ∩ supp (C2) = supp (e). In this case, we say that e separates C into the subcycles
C1 and C2.
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Finally, we will denote the product of edge weights along a cycle C as

p(C) = wi|C|,i1

|C|−1∏
j=1

wij ,ij+1
.

2.3. Graphical representations of matrices

For any H ∈ Sn (C), we define the graph G(H) to have vertex set [n] and edge set
{(i, j) : i 6= j and hij 6= 0}. As observed above, the signs of H contain essential information
about its determinants, so we give G(H) edge weights wij = sgn (hij). The subgraph of
G(H) induced by α ⊆ [n] is simply G (Kα). We will use comp(H) to denote the number of
connected components of G(H).

For determinantally compatible matrices H and K, the only possible differences are the
signs of the off-diagonal elements. We define the graph G(H ,K) to have the shared vertex
and edge sets of G(H) and G(K), and edge weights wij = sgn (hijkij). As above, we will
use comp(H ,K) to denote the number of connected components of G(H ,K).

A graph coloring is a mapping from the vertices of graph G to a discrete set of colors
obeying constraints induced by the edge weights. In traditional graph coloring problems, the
vertices i and j must be assigned different colors whenever the edge (i, j) is present. In our
case, we will be interested in a coloring c of G(H ,K) taking values in {−1, 1} such that
c(j) = wijc(i). If such a mapping exists, it will be referred to as a valid coloring of G(H ,K).

We will be interested in determining whether the graphs we consider have unique colorings,
but by the above definition, this is never true: if c is a valid coloring for G, then so is −c. We
define a rooted coloring to be a valid coloring cr with the property that c(r) = 1 for the root
r. Any connected rooted graph G(H ,K) with a valid coloring possesses a unique rooted
coloring.

Finally, let G± be the set of graphs with edge weights in {−1, 1}. For D ∈ Dn
± and

G ∈ G±, D ·G is the graph with the same vertices as G, but with edge weights w
′
ij = diidjjwij ,

where wij are the edge weights in G. We say that G1 and G2 are D-similar, G1
D∼ G2, if

and only if G1 = D ·G2 for some D ∈ D±. By construction, G(H)
D∼ G(K) if and only if

H
D∼K.

3. The Theory of D-Similarity

Oeding (2011) showed that two complex symmetric matrices are determinantally equivalent
if and only if they are D-similar. Therefore, if we want to understand the properties of
matrices that are determinantally equivalent, we should study the properties of matrices which
are D-similar. In this section, we pursue this study and develop a theory of D-similarity
which is sufficient for our reconstruction. In the course of doing so, we will give an elementary
combinatorial proof of Oeding’s theorem and show how to choose a canonical representative
from the set of matrices with given principal minors.
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3.1. Preliminary Results

To start, we show in Lemmas 3.1 and 3.2 that without loss of generality we can assume
that our graphs are connected and that our vertices are labeled in any convenient order.
Theorem 3.3, which is an interesting result in its own right, will allow us to make arbitrary
choices in our algorithms without worrying that they affect the correctness of the result.

Lemma 3.1. Let H ,K ∈ Sn (C), let σ be a permutation of [n], and let Σ be the corresponding

permutation matrix. H
det≡ K if and only if ΣHΣT det≡ ΣKΣT .

Proof. We will show that H
det≡ K if and only if ΣHΣT det≡ ΣKΣT . If H = DKD−1, then

ΣHΣT = (ΣDΣT )(ΣKΣT )(ΣD−1ΣT ). This follows from the observations that Σ−1 = ΣT

and that ΣDΣT = ΣTDΣ. The proof of the converse is similar and is omitted.

Lemma 3.2. Let H ,K ∈ Sn (C). H
det≡ K if and only if HC

det≡ KC for every connected
component C of G(H ,K).

Proof. As before, we will show that H
D∼ K if and only if HC

D∼ KC for every con-
nected component C of G(H ,K). By Lemma 3.1, we can assume without loss of gener-

ality that H = diag
(
{HCi

}comp(H,K)
i=1

)
and K = diag

(
{KCi

}comp(H,K)
i=1

)
. We write D =

diag
(
{DCi

}comp(H,K)
i=1

)
, and simply observe that H = D ·K if and only if HCi

= DCi
·KCi

for all i, since all entries outside of the blocks corresponding to the connected components
are zero.

Theorem 3.3. Let H ∈ Sn (C) and D1, D2 ∈ Dn
±. D1 · H = D2 · H if and only if

[D1]C = ±[D2]C for every connected component C of G(H).

Proof. We first assume that [D1]C = ±[D2]C for every connected component C of G(H).
Here we can directly apply Lemma 3.2 to conclude that D1 ·H = D2 ·H .

We now assume that D1 ·H = D2 ·H and that G(H) has a single connected component.
Let θ = [D1]11[D2]11, and assume that D1 6= θD2. Then there is some smallest index b > 1
such that [D1]bb 6= θ[D2]bb. This implies that [D1 ·H]bj 6= [D2 ·H]bj for any j < b, and so
we have that D1 ·H 6= D2 ·H. This contradicts our hypothesis, and so we can conclude
that D1 = θD2. By Lemma 3.2, the argument above applies to each connected component
of G(H), and we have the desired result.

3.2. Algorithms

In this section, we give a polynomial time algorithm that correctly decides whether two
determinantally compatible complex symmetric matrices are determinantally equivalent. We
then show how to extend it to be completely constructive: for any determinantally compatible

H ,K ∈ Sn (C), if H
det≡ K, we will construct a D such that H = D ·K; and if H 6det≡ K, we

will construct a β ⊆ [n] such that Hβ 6
det≡ Kβ and Hγ

det≡ Kγ for any γ strictly contained in β.
Throughout this section we assume that any pair H and K are determinantally compatible
and that G(H ,K) is connected, with Lemma 3.2 as justification.
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Algorithm 1 Given determinantally compatible H and K, either produce a D such that
H = DKD−1 or determine that none exists

Let T be a spanning tree of G(H ,K) with root 1
Produce a coloring c of T with c(1) = 1 and construct the corresponding D
for each edge (i, j) not in T do

Verify that wij = diidjj
end for

Recall that in our setting c is a valid coloring of G(H ,K) if and only if c(j) = wijc(i)
for all i and j, and a valid rooted coloring if c(r) = 1 for a fixed root r. We refer to these
constraints collectively as the coloring equations.

Lemma 3.4. H
D∼K if and only if G(H ,K) possesses a valid coloring.

Proof. H = DKD−1 if and only if hij = diidjjkij for all i and j. By the construction of
G(H ,K), wij = sgn (hijkij); therefore H = DKD−1 implies wij = diidjj, and in that case
the coloring defined by c(i) = dii is valid. Conversely, if we are given a valid coloring c of
G(H ,K), we can set dii = c(i), and by the same logic H = DKD−1.

In light of Lemma 3.4, we can decide whether H
D∼ K by determining whether the

coloring equations for G(H ,K) have a solution. Any algorithm that produces a solution to a
system of linear equations may be used to find valid colorings of G(H ,K), but the coloring
equations are so sparse that a specialized algorithm can find the solution much more quickly.
We begin our discussion of such an algorithm with a result on trees and colorability.

Lemma 3.5. If G(H ,K) is a tree, there is a unique valid rooted coloring of G(H ,K) for
any set of edge weights. If G(H ,K) is not a tree, there is some set of edge weights for which
no valid coloring is possible.

Proof. First assume that G(H ,K) is a tree; then we can permute the indices of G(H ,K)
so that the matrix corresponding to the coloring equations is n× n upper triangular with
nonzero diagonal entries. Thus, we are guaranteed that a unique solution exists.

Now assume that G(H ,K) is not a tree. In this case, there is a pair of vertices u and v
such that there is a path p1 from u to v, and a disjoint path p2 from v to u. If we write wp
for the product of the edge weights along the path p, we have that c(u) = c(u)wp1wp2 . We
can always choose edge weights so that this condition is not satisfied.

The proof of Lemma 3.5 gives us a relationship between the colorability of a cycle and
the product of its edge weights. We record this result as Corollary 3.6.

Corollary 3.6. A cycle C of G(H ,K) possesses a valid coloring if and only if p(C) = 1.

By Lemma 3.5, the coloring equations for any tree have a solution. Furthermore, they are
sufficiently sparse that any of the standard graph search algorithms can be used to solve them
with slight modifications. Therefore, our algorithm to find a valid coloring of an arbitrary
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graph is simple: we will color some spanning tree, and verify that the coloring produced
is valid for the entire graph. This idea is captured in Algorithm 1 and proved correct in
Theorem 3.7.

Theorem 3.7. Let H ,K ∈ Sn (C). Algorithm 1 produces a D ∈ Dn
± such that H =

DKD−1 if any exists, and otherwise determines that no such D exists. Furthermore, its
running time is O(m+ n), where m and n are the number of edges and vertices in G(H ,K),
respectively.

Proof. By Lemma 3.4, if H = DKD−1 for some D ∈ Dn
±, then this D corresponds to a

valid coloring of G(H ,K). As discussed above, Algorithm 1 finds a valid rooted coloring of
the spanning tree T and verifies that it holds for the entire graph. By Theorem 3.3 and the

constraint c(1) = 1, the D produced is irrespective of the choice of spanning tree. If H 6D∼K,
then the coloring equations have no solution, and Algorithm 1 will correctly verify this. The
running time analysis is identical to that of breadth first search, and is omitted.

We now consider the problem of verifying that H 6det≡ K. While it is sufficient to show
that there is no D such that H = D ·K, we can actually do more: in polynomial time, we

can produce a β ⊆ [n] such that Hβ 6
det≡ Kβ, but Hγ

det≡ Kγ for every γ strictly contained in β.
We will refer to such β as a minimal counterexample, and to any α ⊇ β as a counterexample.
In order to do this efficiently, we must examine the structure of any minimal counterexample.

Lemma 3.8. If H 6D∼K, any minimal counterexample must be the support of some simple
chordless cycle C.

Proof. By Lemma 3.5 and Corollary 3.6, any minimal counterexample must be the support
of a cycle C such that p(C) = −1. Suppose that C has some chord (u, v) that separates
C into C1 and C2, both subsets of C. Then p(C) = p(C1)p(C2), and either p(C1) = −1
or p(C2) = −1; in either case we have a smaller counterexample by Corollary 3.6. Thus a
counterexample can be minimal only if it is the support of a simple chordless cycle.

The proof of Lemma 3.8 suggests an algorithm for finding a minimal counterexample

when H 6D∼K. The procedure is outlined in Algorithm 2, and its correctness is recorded in
Theorem 3.9.

Theorem 3.9. Let H ,K ∈ Sn (C). If H 6D∼ K, then Algorithm 2 correctly discovers a
minimal counterexample. Its running time is O(m), where m is the number of edges in
G(H ,K).

Proof. In the worst case, Algorithm 2 removes a single edge at each iteration. The number
of iterations is then O(m), and the cost of discovering all the chords of a given cycle is O(m),
so the overall running time of the algorithm is O(m).
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Algorithm 2 Given determinantally compatible H and K with H 6D∼ K, find a minimal
counterexample α

Run Algorithm 1 until a contradiction is discovered along edge e
Let C be the cycle consisting of e and the path from i to j in the spanning tree T
while C contains a chord e = (u, v) do

Let C1 and C2 be the subcycles of C separated by e
if p(C1) = −1 then

C ← C1

else
C ← C2

end if
end while
return C

3.3. Simple Chordless Cycles and Determinantal Equivalence

From the discussion regarding Algorithm 2, it is clear that simple chordless cycles have a
privileged role in the theory of D-similarity. In this subsection, we will specify exactly how

the simple chordless cycles of G(H) and G(K) are related when H
det≡ K.

We begin with two lemmas on D-similarity of graphs.

Lemma 3.10. For any G ∈ G±, there is some H ∈ Sn (C) such that G = G(H).

Proof. Define H by hii = 1 for all i, hij = 0 if (i, j) is not an edge of G, and hij = wij if (i, j)
is an edge of G. Then G = G(H) by construction.

Lemma 3.11. Let C1 and C2 be simple chordless cycles of length n with weights in {−1, 1}.
C1

D∼ C2 if and only if p(C1) = p(C2).

Proof. By Lemma 3.10, we can choose H and K such that C1 = G(H) and C2 = G(K).

Then C1
D∼ C2 if and only if H

D∼ K. By Lemma 3.4, H
D∼ K if and only if G(H ,K)

possesses a valid coloring. By Corollary 3.6, G(H ,K) possesses a valid coloring if and only
if p(G(H ,K)) = 1. By construction, p(G(H ,K)) = 1 if and only if p(C1) = p(C2).

Given a determinantally compatible pair of matrices (H ,K) and a cycle C contained
in G(H ,K), we write CH to denote C with the edge weights inherited from G(H), CK to
denote C with the edge weights inherited from G(K), and CH,K to denote C with edge
weights inherited from G(H ,K). With this notation, we can now state and prove a necessary

and sufficient condition for H
D∼K in terms of the simple chordless cycles of G(H ,K).

Theorem 3.12. Let H, K ∈ Sn (C) be determinantally compatible. Then H
D∼ K if and

only if p (CH) = p (CK) for every simple chordless cycle C of G(H ,K).
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Proof. We first assume that H
D∼ K. If C is any simple chordless cycle of G(H ,K), we

have CH
D∼ CK . Therefore p(CH) = p(CK) by Lemma 3.11.

We now assume that H 6D∼ K. Then there is some minimal counterexample α. By
Lemma 3.8, G (Hα,Kα) must be a simple chordless cycle C. Lemma 3.11 allows us to
conclude that p(CH) 6= p(CK).

The matrices whose graphs are simple chordless cycles are known as cyclic tridiagonal
matrices (Engeln-Müllges and Uhlig, 1996). The following lemma gives an explicit expression
for the determinant of a cyclic tridiagonal matrix T .

Lemma 3.13. Let T be a cyclic tridiagonal matrix. Then

det (T ) = tnn det
(
T[n−1]

)
− t2n−1,n det

(
T[n−2]

)
− t21,n det

(
T[n−1]\[1]

)
+ (−1)n+1t1n

n−1∏
i=1

ti,i+1

Proof. The expression is obtained by the Laplace expansion of the determinant of T . The
details are omitted.

With Theorem 3.12 and Lemma 3.13 in hand, we have sufficient machinery to provide a
simple combinatorial proof of Oeding’s theorem equating D-similarity and determinantal
equivalence.

Theorem 3.14 (Oeding (2011)). For H ,K ∈ Sn (C), H
D∼K if and only if H

det≡ K.

Proof. If H and K are not determinantally compatible, then H 6D∼ K and H 6det≡ K. We
therefore assume that H and K are determinantally compatible. We first assume that

H
D∼K. Then H is diagonally similar to K, and as diagonally similar matrices have equal

corresponding principal minors, we can conclude that H
det≡ K.

We now assume that H
det≡ K. If G(H ,K) is a tree, we have that H

D∼K by Lemma 3.5.
Otherwise, let C be an arbitrary simple chordless cycle of G(H ,K). Determinantal equiv-
alence implies, applying Lemma 3.13 to the matrices Hsupp(C) and Ksupp(C) and canceling
equal terms, that

h|C|1

|C|−1∏
i=1

hi,i+1 = k|C|1

|C|−1∏
i=1

ki,i+1 .

We know that |hij| = |kij| for all i and j, so p (CH) = p (CK). Since this holds for every

simple chordles cycle in G(H ,K), Theorem 3.12 allows us to conclude that H
D∼K.

Two comments are in order. First, as observed in Engel and Schneider (1980), the
hypotheses of Theorem 3.14 can be weakened considerably. Our argument would still go
through if we could merely assume that H and K are determinantally compatible and the
principal minors corresponding to the cycles of G(H ,K) are equal. In particular, for any
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determinantally compatible H and K with no zeros off the diagonal, we have that H
det≡ K

if and only if all the corresponding 3× 3 principal minors are equal.
Second, we note that it was shown in Oeding (2011) that any two determinantally

compatible complex symmetric matrices are determinantally equivalent if and only if these
3×3 principal minors are equal. Our machinery does not seem to be strong enough to recover
this more general result.

We close this section by counting the number of matrices with equal corresponding
principal minors to some fixed H . The following result is an easy corollary of Theorems 3.3
and 3.14.

Corollary 3.15. For any fixed H,
∣∣∣{K : H

det≡ K
}∣∣∣ = 2n−comp(H).

3.4. Canonicalization

Given that there exist many matrices determinantally equivalent to a fixed H, how
can we pick a canonical representative from this set? In this subsection, we will show that
choosing a spanning tree T of G(H) and requiring it to have positive edge weights uniquely
determines an element of this set. We will then describe a method of canonicalization that
takes a deterministic spanning tree algorithm A and a matrix H and produces the canonical
representative corresponding to the output of A. We begin with two lemmas regarding
positive edge weight spanning trees and D-similarity.

Lemma 3.16. Let H
D∼ K, and assume that there is a spanning tree T of G(H ,K) with

weights identically equal to one. Then H = K.

Proof. By Theorem 3.12, we must have p(C) = 1 for every chordless cycle C of G(H ,K).
Every edge in T has weight one, and so it follows that every edge of G(H ,K) has weight
one. Therefore H = K.

Lemma 3.17. Assume that G(H) is a tree, and let D be the matrix corresponding to the
solution of the coloring equations for G(H). If K = D−1HD, then sgn (kij) = 1 whenever
i 6= j and kij 6= 0.

Proof. Choose an arbitrary node r as the root of T , and consider the subgraph consisting of
the path from r to any leaf l. Without loss of generality we assume every edge is of the form
(u, u+ 1). Then d11 = 1 and dii =

∏i−1
j=1wj,j+1 for i > 1. We have hij = diidjjkij for all i and

j. If j 6= i+ 1, hij = 0, so kij = 0 as well. If j = i+ 1, diidjj = sgn (hij), which implies that
sgn (kij) = 1 as claimed. Since l was chosen arbitrarily, this holds for every path from the
root to a leaf, and so it holds for the entire tree.

The canonicalization procedure now follows naturally. Given H, we take T to be a
spanning tree of G(H) generated by a spanning tree algorithm A. We let D be the matrix
corresponding to a valid coloring of T , and we take the canonical representation of H to
be D−1HD. Algorithm 3 is a restatement of this procedure, and is shown to be correct in
Theorem 3.18.
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Algorithm 3 Canonicalize H with respect to a spanning tree algorithm A
function Canonicalize(H , A)

Run A on G(H) to produce a spanning tree T
Mark 1 as the root of T
Produce a D corresponding to a rooted coloring for T
return D−1HD

end function

Theorem 3.18. Let H ,K ∈ Sn (C), let A be a spanning tree algorithm, and let HA denote

the output of Algorithm 3 with inputs H and A. Then H
det≡ K if and only if HA = KA.

Proof. We first assume that HA = KA. HA
D∼H and KA

D∼K, so it follows that H
D∼K.

By Theorem 3.14, we have that H
det≡ K.

We now assume that H
det≡ K. By Theorem 3.14, H

D∼K. This implies that HA
D∼KA,

and the weights of every edge of THA and TKA are identically one by Lemma 3.17. We can
therefore apply Lemma 3.16 to conclude that HA = KA.

4. Solving the Symmetric Principal Minor Assignment Problem

In Section 3 we characterized the set {K : H
det≡ K} for any symmetric matrix H and

described how to pick a canonical representative from this set. In this section, we give a naive
algorithm that will reconstruct this canonical representative given a constant-time oracle for
the principal minors of a symmetric matrix H .

As before, chordless cycles will play a prominent role in our analysis. We start by showing
that knowing the determinant of a cyclic tridiagonal matrix, its diagonal entries, and all but
one of the off-diagonal entries is sufficient to infer the final entry.

Lemma 4.1. Let H and K be determinantally compatible cyclic tridiagonal matrices where
hi,i+1 = ki,i+1 for all i between 1 and n− 1. Then h1n = k1n.

Proof. This follows immediately from Lemma 3.13.

We now consider the problem of reconstructing a cyclic tridiagonal matrix T from its
principal minors. As always, we can infer the diagonal entries from the one-element principal
minors, and the magnitudes of the off-diagonal entries from the two-element principal minors.
If we construct a spanning tree of G(T ), then there is exactly one edge whose sign is unknown.
This satisfies the hypotheses of Lemma 4.1, and so we may infer the unknown sign. We refer
to this process of inferring the sign of an edge as marking, and every edge not in T starts
unmarked.

We move on from this simple case to reconstructing a matrix H such that G(H) consists
of a simple cycle C with at least one chord (u, v). In this case we can use Algorithm 4 to
reconstruct H . We will prove that this procedure is correct in Theorem 4.2.

12



Algorithm 4 Given a cycle C with exactly one unmarked edge e, infer the sign of e

procedure MarkCycle(C, e)
if C contains a chord e′ then

Let C1 be the subcycle of C not containing e, and C2 the other subcycle
if e′ is unmarked then

MarkCycle(C1, e
′)

end if
MarkCycle(C2, e)

else
Query the principal minor oracle for the determinant of the submatrix corresponing

to C1 and use Lemma 3.13 to determine the sign of e.
end if

end procedure

Theorem 4.2. Let H ∈ Sn (C) be such that G(H) consists of a simple cycle with any
number of chords. Given the diagonal entries of H, the magnitudes of the off-diagonal entries,
and a spanning tree T of G(H) with each edge marked positive, Algorithm 4 will correctly
infer the signs of the entries corresponding to the unmarked edges.

Proof. The proof is by induction on the number of edges in {e ∈ G(H) : e /∈ T}, i.e., the
unmarked edges. If there is exactly one unmarked edge e, then the sign may be inferred as
argued above. We now assume that the algorithm works for any cycle with up to k unmarked
edges, and we consider its operation on a cycle with k + 1 unmarked edges.

Suppose that Algorithm 4 never chooses an unmarked chord e′; then the algorithm is
singly recursive, and eventually C2 will contain at most k unmarked edges and by induction
the result will be correct. Otherwise, at some point e′ will be unmarked. In this case C1

contains at most k unmarked edges, so by induction it is marked correctly. Once e′ is marked,
C2 contains at most k unmarked edges, so it is also marked correctly by induction. At this
point the entire cycle is marked correctly.

We finally consider the general symmetric principal minor assignment problem. In this
case, the structure of G(H) is arbitrary. Here we may use Algorithm 5 to perform the
reconstruction. We will prove in Theorem 4.3 that this procedure is correct.

Theorem 4.3. Given a principal minor oracle for H ∈ Sn (C) and a deterministic spanning
tree algorithm A, Algorithm 5 will correctly reconstruct the canonicalization HA. Its running
time is O(m2+n2), where m and n are the numbers of edges and vertices in G(H), respectively.

Proof. Let H̃A denote the output of Algorithm 5 when given the oracle for H and A as input.

By construction, p
(
CH̃A

)
= p (CHA) for every simple chordless cycle C of G

(
H̃A,HA

)
.

Therefore H̃A
D∼HA by Theorem 3.12, and H̃A

det≡ HA by Theorem 3.14. H̃A and HA agree
on the spanning tree T , so by Lemma 3.16, we can conclude that H̃A = HA.
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Algorithm 5 Given a principal minor oracle for H and a deterministic spanning tree
algorithm A, output the canonicalization HA

Use the first and second order principal minors of H to infer the diagonal elements and
the magnitudes of the off-diagonal elements
Let T be a spanning tree of G(H) generated by A, and mark every edge in T as positive
while G(H) contains an unmarked edge (i, j) do

Let C be the cycle consisting of (i, j) and the path from i to j in T
MarkCycle(C, (i, j))

end while

Computing the diagonal entries and the magnitudes of the off-diagonal entries is O(n2).
The running time of Algorithm 4 is identical to that of Algorithm 2, and it must be called
O(m) times, so the overall running time of Algorithm 5 is O(m2 + n2).

We note that we have additionally produced a method for computing the determinant of
a matrix H given its diagonal entries, the magnitude of its off-diagonal entries, and the value
of p(C) for every simple chordless cycle C of G(H). In this case we can modify Algorithm 5
to assign signs to the entries of H consistent with the given sign products. From there, we
may compute the determinant directly.

5. An Improved Algorithm

Algorithm 5 constructs the canonical matrix HA for an arbitrary spanning tree algorithm
A. However, a faster construction is possible when A adopts a breadth-first search (BFS)
strategy. This is because BFS trees have the guarantee that the endpoints of non-tree edges
are never ancestors, and differ in depth by at most one. We can exploit these facts to find
chordless cycles in G(H) efficiently, avoiding the potentially costly recursion into Algorithm 4.

Theorem 5.1. Given a graph G on n nodes, a corresponding BFS tree T , and a pair of
vertices i and j, we can construct in O(n) time a simple path from i to j that has no chords.

Proof. Let k be the lowest common ancestor (LCA) of i and j in T . (We can find k in O(n)
time using standard techniques.) Let Pik denote the simple path obtained by iteratively
following parent pointers from i until reaching k, and similarly for Pjk. Since T is a BFS
tree, there are no non-tree edges between ancestors, and therefore Pik and Pjk are chordless.
The concatenation of these two paths (which intersect only at k, since k is the LCA) is thus
a simple path from i to j that is chordless unless there exists an edge between a vertex on
Pik and a vertex on Pjk.

Consider an arbitrary vertex i′ on Pik. Because T is a BFS tree, non-tree edges always
connect vertices whose depths differ by at most one, and, by construction, Pjk contains at
most one vertex at any depth. This means that there are at most three vertices on Pjk
that could be connected by an edge to i′. We can therefore check for chords to a given i′ in
constant time, or to all vertices on Pik in O(n) time.

14



Algorithm 6 Given a principal minor oracle for H , output the canonicalization HBFS

Use the first and second order principal minors of H to infer the diagonal elements and
the magnitudes of the off-diagonal elements
Let T be a BFS spanning tree of G(H), and mark every edge in T as positive
Sort the non-tree edges in G(H) using the partial ordering (i, j) < (i′, j′) whenever
depthT (i) < depthT (i′) or (depthT (i) = depthT (i′) and depthT (j) < depthT (j′))
for each non-tree edge (i, j) in sorted order do

Compute a simple chordless path from i to j in G(H)− (i, j) using Theorem 5.1
Call the oracle on the result (which is a simple chordless cycle in G) to mark (i, j)

end for

If we perform this search from the bottom up, then if we detect a chord (i′, j′), we will be
guaranteed that no other chord exists between Pii′ and Pjj′ ; thus their concatenation will be
a simple chordless path between i and j.

Algorithm 6 shows how to use the results of Theorem 5.1 to implement the canonicalization
procedure.

Theorem 5.2. Given a principal minor oracle for H ∈ Sn (C), Algorithm 6 correctly

reconstructs a matrix HBFS
D∼H. Its running time is O(n2 +mn), where m and n are the

numbers of edges and vertices in G(H), respectively.

Proof. We address the running time first. Setting the diagonal elements and off-diagonal
magnitudes requires O(n2) time, and constructing a BFS tree takes O(m+ n) time. The sort
operation is O(m log(m)), although sorting is not actually required in practice if the edges are
simply expanded in BFS order. The for loop executes less than m times, and each iteration
requires a call to the O(n) path-finding procedure. Thus the total runtime of Algorithm 6 is
O(n2 +mn). If G(H) is connected, then m ≥ n− 1, and the running time is simply O(mn).

We now address correctness. By Theorem 3.18, there exists a canonicalization HBFS
D∼H

corresponding to the BFS tree found in the second step of Algorithm 6; to find it, we must
successfully mark each edge in G(H). The tree edges are marked immediately. Appealing to
Lemma 4.1, the marking of a non-tree edge will be successful if the simple chordless path
found in the first step of the for loop is completely marked, making (i, j) the only unmarked
edge in the cycle passed to the oracle.

To see why this is always true, note that the path found using Theorem 5.1 has at most
one non-tree edge (i′, j′); since tree edges are marked, this is the only edge that could possibly
be unmarked. By construction, depthT (i′) ≤ depthT (i) and depthT (j′) ≤ depthT (j), and
since the edge (i, j) is removed from the graph, at least one of the two inequalities must hold
strictly. Thus the edge (i′, j′) occurs before (i, j) in the sorted list, and has already been
marked.

A MATLAB implementation of Algorithm 6 (with some optimizations) is available from
http://www.eecs.umich.edu/~kulesza/code/sym_assignment.tgz.
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Figure A.1: The graph G(H) of the matrix to be reconstructed.

Appendix A. Reconstruction of a Small Matrix

In this appendix, we demonstrate our reconstruction algorithm on the 6× 6 matrix

H =


3 −1 1 0 0 −1
−1 3 −1 −1 0 0

1 −1 3 0 −1 −1
0 −1 0 3 −1 0
0 0 −1 −1 3 0
−1 0 −1 0 0 3

 .

The corresponding graph G(H) is shown in Figure A.1.
Our first step is to use the first order principal minors to read off the diagonal elements

of H and the second order principal minors to read off the magnitudes of the off-diagonal
elements. This yields the matrix

H̃ =


3 1 1 0 0 1
1 3 1 1 0 0
1 1 3 0 1 1
0 1 0 3 1 0
0 0 1 1 3 0
1 0 1 0 0 3

 .

We must now infer the signs of the off-diagonal elements. We begin by constructing a
marked spanning tree T of G(H̃), shown in Figure A.2(a). There are three edges that must
be marked: (2, 3), (4, 5) and (3, 6). Algorithm 6 selects umarked edges in an order consistent
with the lexicographic ordering on the depths of their endpoints. As a result, we must mark
the edges in the order (2, 3), (3, 6), (4, 5).
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Figure A.2: The graph G(H̃) constructed by Algorithm 6: (a) the initial spanning tree of G(H̃); (b) the graph
after the edge (2, 3) is marked; (c) the graph after the edge (3, 6) is marked; and, (d) the final reconstructed
graph.
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We begin by marking (2, 3). The cycle 1, 2, 3 has no chords, so we query the oracle for
the value of det

(
H{1,2,3}

)
. The result is 20, which implies that h̃23 > 0. We record this to

the graph G(H̃), which is shown in Figure A.2(b).
The second edge we mark is (3, 6). This is contained in the simple chordless cycle 1, 3, 6,

so we query the oracle for det
(
H{1,3,6}

)
. This is also equal to 20, implying that h̃36 > 0. We

record this to the graph, whose state after this step is shown in Figure A.2(c).
Finally, we mark the edge (4, 5). The relevant chordless cycle is 2, 3, 5, 4. We query the

oracle to find that det
(
H{2,3,4,5}

)
= 45, and this implies that h̃45 > 0. We record this as the

final edge in the graph, and we have completed the reconstruction. The final graph is shown
in Figure A.2(d).

Of course, in general some edges will be marked as negative; however, as the reader may
see from the structure of this example, when the matrix to be reconstructed is D-similar to
an entrywise nonnegative matrix H+, then Algorithm 6 will return H+.
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