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ABSTRACT

LEARNING WITH DETERMINANTAL POINT PROCESSES

John A. Kulesza

Supervisors: Ben Taskar and Fernando Pereira

The increasing availability of both interesting data and processing capacity has led to
widespread interest in machine learning techniques that deal with complex, structured
output spaces in fields like image processing, computational biology, and natural lan-
guage processing. By making multiple interrelated decisions at once, these methods
can achieve far better performance than is possible treating each decision in isolation.
However, accounting for the complexity of the output space is also a significant com-
putational burden that must be balanced against the modeling advantages. Graphical
models, for example, offer efficient approximations when considering only local, positive
interactions. The popularity of graphical models attests to the fact that these restrictions
can be a good fit in some cases, but there are also many other interesting tasks for which
we need new models with new assumptions.

In this thesis we show how determinantal point processes (DPPs) can be used as
probabilistic models for binary structured problems characterized by global, negative
interactions. Samples from a DPP correspond to subsets of a fixed ground set, for
instance, the documents in a corpus or possible locations of objects in an image, and
their defining characteristic is a tendency to be diverse. Thus, DPPs can be used to
choose diverse sets of high-quality search results, to build informative summaries by
selecting diverse sentences from documents, or to model non-overlapping human poses
in images or video. DPPs arise in quantum physics and random matrix theory from a
number of interesting theoretical constructions, but we show how they can also be used
to model real-world data; we develop new extensions, algorithms, and theoretical results
that make modeling and learning with DPPs efficient and practical. Throughout, we
demonstrate experimentally that the techniques we introduce allow DPPs to be used
for performing real-world tasks like document summarization, multiple human pose
estimation, search diversification, and the threading of large document collections.
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1
Introduction

Probabilistic modeling and learning techniques have become indispensable tools for an-
alyzing data, discovering patterns, and making predictions in a huge variety of real-world
settings. We rely on Bayesian spam classifiers to keep our inboxes clean, collaborative
filters to recommend movies, books, music, and other entertainment, and statistical
regressions to predict the outcomes of major elections. Likewise, decisions to invest large
sums of money, judgments of scientific significance, and diagnoses of serious illnesses
are all increasingly being made with guidance from probabilistic models. Applications
like these typically involve choosing between a small number of alternatives, such as
whether or not an email is spam, which candidate will receive the greatest number of
votes, or whether a patient has a particular disease.

In recent years, however, the widespread availability of both data and processing
capacity has led to new applications and methods involving more complex, structured
output spaces, where the goal is to simultaneously make a large number of interrelated
decisions. Modern smartphones, for instance, can recognize entire sentences of speech
in seconds, allowing them to give driving directions or compose text messages without

1



Chapter 1. Introduction 2

any traditional input. This process involves modeling sequences of words, where the
identity of each helps determine the next: the words “to”, “too”, and “two” may sound
indistinguishable on their own, but when they follow “directions” we can make a
reliable guess as to which was intended. Thus, knowledge about the structure of the
output space, defined as the pattern of interactions between individual decisions, can
significantly improve performance. Coordinating multiple decisions using structure has
been crucial to achieving good results on a wide variety of problems in image processing,
computational genomics, natural language processing, and many other areas.

Unfortunately, the introduction of structure typically involves a combinatorial explo-
sion of output possibilities. Naively, we need to consider the complete cross-product of
decisions in order to make an optimal prediction. Of course, this is generally impossible;
even if we could enumerate all of the words a user might speak, the number of potential
multi-word utterances grows exponentially with length. Instead, we must search for
compromises—limited types of structure that offer useful modeling advantages over
standard, independent decision-making while still remaining algorithmically tractable.
One popular approach is to permit only local structure: we build a graph in which
individual decisions are represented by nodes, and use a sparse set of edges to indicate the
presence of interactions between them. This is the basic form of graphical models, which
offer intuitive design, significant expressive power, and clever dynamic programming
algorithms for performing probabilistic inference in polynomial time.

However, the restrictions imposed by graphical models are not insignificant. Local
structure implies that probabilities factor into interactions between only small numbers
of decisions; for example, we cannot naturally incorporate the knowledge that a sentence
should have at least one verb, since such a rule depends on all words at once. Furthermore,
for graphical model inference to be efficient, the graph defined by local interactions must
in general be tree-shaped. This constraint enforces an often unnatural anti-transitivity: if
A interacts with B and C, then B and C cannot directly interact with each other. There
exist subclasses of graphical models for which inference is tractable or approximable
regardless of graph shape; however, this advantage is obtained by restricting instead the
kinds of interactions that are allowed. Typically, these associative or submodular-energy
models permit only positive interactions, requiring that decisions tend to be made in
the same way. For example, if the nodes correspond to locations in space, edges connect
adjacent locations, and we need to decide whether each location contains a particle
or not, then positive interactions can be used to encode that a particle in one location
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makes particles nearby more likely—that is, the particles attract one another—but not
that nearby particles become less likely, as when the particles are repulsive.

In this thesis we show how determinantal point processes can be used to directly
complement these weaknesses, efficiently modeling global structure among a set of
negatively interacting decisions. Determinantal point processes (DPPs) have been studied
extensively by mathematicians, in large part because they exactly characterize a surprising
array of theoretical phenomena, including distributions of quantum particles and the
eigenvalues of random matrices. This work has led to the development of a deep and
beautiful theory, some of which we will describe in Chapter 2. However, our interest
is primarily in using DPPs to model and learn from real-world data; in this context,
the theory behind DPPs is valuable particularly because it gives rise to efficient, exact
algorithms for a wide range of inference tasks.

1.1 Diversity

A DPP is a distribution over subsets of a fixed ground set. Equivalently, a DPP over a
ground set ofN items can be seen as modeling a binary characteristic vector of lengthN ;
the decisions being coordinated, therefore, are whether to include or exclude each of the
N items in the ground set. For instance, we might have a large set of search results, and
use a DPP to select a small subset to show to a user. We might want to model the discrete
times at which airplanes take off from an airport, which form a subset of all the seconds
in the day. Or perhaps we want to choose a set of cities to visit on a concert tour from
among all the major world cities. The primary characteristic of subsets preferred by a
DPPmodel is that they exhibit diversity; that is, sets are more probable when they contain
less similar items. Thus, a DPP will show the user a set of search results that covers
multiple distinct aspects of the query, not just the most popular one. A DPP will be a
good fit for modeling takeoff times if they tend not to occur in rapid succession, perhaps
because vortexes must be allowed to subside between uses of the runway. Similarly, a
DPP will favor sets of cities that are spread out across the globe, perhaps maximizing the
number of fans who can attend.

As these examples illustrate, the general concept of diversity can take on a variety of
forms depending on context and application. However, we can identify several broad
perspectives on diversity that arise frequently in real-world applications.
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Figure 1.1: On the left, points are sampled randomly; on the right, repulsion between
points leads to the selection of a diverse set of locations.

Repulsion. When the elements of the ground set represent a continuous space such as
time or a physical space and the subset selection problem is to identify which locations
are occupied, repulsion based on proximity leads to one intuitive notion of diversity
(see Figure 1.1). The repulsion of certain quantum particles, in fact, behaves exactly
according to a DPP; more generally, repulsion can be due to physical constraints, as
for takeoff times above, or to general preferences and even behavioral tendencies. For
example, groups of moviegoers might tend to sit far away from other groups, resulting
in a “diverse” set of occupied seats. Certain natural phenomena, such as the locations of
trees and ant colonies in a forest, are also known to exhibit repulsive patterns.

Filtering. We may think of the ground set in some cases as a set of “candidates” from
which we want to identify a desirable subset. In this setting the goal of filtering out
candidates that are too similar to others gives rise to an alternative perspective on diversity.
For instance, in planning our concert tour we may not want to play two nearby cities,
since we risk diluting attendance. Or, as in Figure 1.2, we might have a large set of
candidate locations identified by a weak detector. Because a single object may cause
the detector to fire many times, choosing the strongest detections may yield redundant
representations of the most salient target, completely ignoring less detectable targets. We
can improve performance in such situations by filtering the candidates using a notion of
diversity. Alternatively, we can think of diversity as a form of prior knowledge; a DPP
can then be used to improve a model that might otherwise over-predict.

Summarization. When the items in the ground set provide information about a central
theme or category, then the selection of a diverse subset of those items can be seen as a
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Figure 1.2: On the left, the output of a human pose detector is noisy and uncertain; on
the right, applying diversity as a filter leads to a clean, separated set of predictions.

Figure 1.3: Diversity is used to generate a set of summary timelines describing the most
important events from a large news corpus.

form of summarization. A large collection of news articles, for example, might contain
many versions of the same important stories, but a diverse subset will cover each one
only once (Figure 1.3). The concept of summarization need not be restricted to text; we
could imagine summarizing movies with a subset of frames, audio with a small selection
of clips, or even multimedia collections with summaries that are diverse in medium
(text, video, audio) as well as content. Summarization can also be used as a way to hedge
against uncertainty; e.g., in the search example above, we are more likely to satisfy the
user if we offer a relevant result for each possible meaning of the query.
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1.2 Contributions

In this thesis we present a range of modeling extensions, efficient algorithms, and
theoretical results for determinantal point processes with the goal of enabling practical
modeling and learning. Our main contributions are summarized below.

• We provide a complete introduction to DPPs tailored to the interests of the ma-
chine learning community. We emphasize intuitions and include new, simplified
proofs for some theoretical results. We provide descriptions of known efficient
inference algorithms, and characterize their computational properties. We list
some remaining open questions.

• We propose a novel decomposition of DPPs into distinct quality and diversity
terms, emphasizing the fundamental tradeoff between these two goals and offering
an intuitive modeling abstraction.

• We compare the expressive potential of DPPs to that of Markov random fields,
where negative interactions are computationally intractable.

• We introduce a dual representation for DPPs that permits efficient statistical infer-
ence even when the number of items is very large.

• We prove that random projections can be used to reduce the computational re-
quirements of DPPs while maintaining fidelity to the original model.

• We introduce conditional DPPs, which depend on input data, and show how the
quality model can be efficiently learned from a labeled training set.

• We provide a complete characterization of the identifiability problem for DPPs, and
conjecture that maximum-likelihood learning for the diversity model is NP-hard.

• We introduce k-DPPs, which are conditioned on subset size and allow explicit
control over the number of items selected by the model. We derive corresponding
inference algorithms based on recursions for the elementary symmetric polynomi-
als.

• We introduce structured DPPs, which model diverse sets of structured objects such
as sequences, trees, or graphs. In this setting the ground set is exponentially large



Chapter 1. Introduction 7

and the number of possible subsets is doubly-exponential; however, we show that
a factorization of the quality and diversity models enables efficient inference.

• We provide a variety of experimental results along the way, demonstrating the
successful application of our methods to real-world tasks including document
summarization, image search, multiple-pose estimation, and complex threading
of large corpora.

1.3 Thesis outline

We summarize the chapters that follow.

Chapter 2: Determinantal point processes. We begin by reviewing determinantal
point processes in the context of machine learning. We focus on discrete DPPs, empha-
sizing the intuitions, algorithms, and computational properties that form the basis of
our work in later chapters.

Chapter 3: Representation and algorithms. We describe a novel decomposition of
the DPP that makes explicit its fundamental tradeoff between quality and diversity. We
compare the expressiveness of DPPs and MRFs, characterizing the tradeoffs in terms of
modeling power and computational efficiency. We also introduce a dual representation
for DPPs, showing how it can be used to perform efficient inference over large ground
sets. When the data are high-dimensional and dual inference is still too slow, we show
that random projections can be used to maintain a provably close approximation to the
original model while greatly reducing computational requirements.

Chapter 4: Learning. We derive an efficient algorithm for learning the parameters of
a quality model when the diversity model is held fixed. We then discuss the difficulties
of learning the diversity model, and conjecture that it is NP-hard in general. Finally, we
employ our learning algorithm to perform extractive summarization of news text.

Chapter 5: k-DPPs. In this chapter we present a practical extension of DPPs that allows
for modeling sets of fixed size. We show not only that this extension solves an important
practical problem, but also that it increases the expressiveness of the model: a k-DPP can
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capture distributions that a standard DPP cannot. The extension to k-DPPs necessitates
new algorithms for efficient inference, which we provide. We validate the new model
experimentally on an image search task.

Chapter 6: Structured DPPs. In practice, we frequently encounter complex data
items having combinatorially many possible configurations, e.g., sequences. In this
chapter, we extend DPPs to model diverse sets of such structured items. We give a natural
factorization of the quality and diversity terms over structure “parts”, and show how
this leads to tractable inference algorithms using second-order message passing. We
demonstrate structured DPPs on a toy geographical paths problem, a still-image multiple
pose estimation task, and two high-dimensional text threading tasks.

Chapter 7: Conclusion. We summarize our contributions and discuss their signifi-
cance and limitations. We mention some remaining unanswered questions and other
possibilities for future work.



2
Determinantal point processes

Determinantal point processes (DPPs) were first identified as a class by Macchi (1975),
who called them “fermion processes” because they give the distributions of fermion
systems at thermal equilibrium. The Pauli exclusion principle states that no two fermions
can occupy the same quantum state; as a consequence fermions exhibit what is known
as the “anti-bunching” effect. This repulsiveness is described precisely by a DPP.

In fact, years before Macchi gave them a general treatment, specific DPPs appeared
in major results in random matrix theory (Mehta and Gaudin, 1960; Dyson, 1962a,b,c;
Ginibre, 1965), where they continue to play an important role (Diaconis, 2003; Johans-
son, 2005b). Recently, DPPs have attracted a flurry of attention in the mathematics
community (Borodin and Olshanski, 2000; Borodin and Soshnikov, 2003; Borodin and
Rains, 2005; Borodin et al., 2010; Burton and Pemantle, 1993; Johansson, 2002, 2004,
2005a; Okounkov, 2001; Okounkov and Reshetikhin, 2003; Shirai and Takahashi, 2000),
and much progress has been made in understanding their formal combinatorial and
probabilistic properties. The term “determinantal” was first used by Borodin and Olshan-
ski (2000), and has since become accepted as standard. Many good mathematical surveys

9
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are now available (Borodin, 2009; Hough et al., 2006; Shirai and Takahashi, 2003a,b;
Lyons, 2003; Soshnikov, 2000; Tao, 2009).

One of the goals of this thesis is to provide a comprehensible and focused introduction
to DPPs for the machine learning community, where we believe there is a need for
computationally efficient models of diversity. To this end, we begin with an overview
covering the aspects of DPPs most relevant to that community, emphasizing intuitions,
algorithms, and computational properties.

2.1 Definition

A point process P on a ground set Y is a probability measure over “point patterns” or
“point configurations” of Y , which are finite subsets of Y . For instance, Y could be a
continuous time interval during which a scientist records the output of a brain electrode,
with P({y1, y2, y3}) characterizing the likelihood of seeing neural spikes at times y1, y2,
and y3. Depending on the experiment, the spikes might tend to cluster together, or they
might occur independently, or they might tend to spread out in time. P captures these
correlations.

For the remainder of this thesis, we will focus on discrete, finite point processes,
where we assume without loss of generality that Y = {1, 2, . . . , N}; in this setting
we sometimes refer to elements of Y as items. Much of our discussion extends to the
continuous case, but the discrete setting is computationally simpler and often more
appropriate for real-world data—e.g., in practice, the electrode voltage will only be
sampled at discrete intervals. The distinction will become even more apparent when we
apply our methods to Y with no natural continuous interpretation, such as the set of
documents in a corpus.

In the discrete case, a point process is simply a probability measure on 2Y , the set of
all subsets of Y . A sample from P might be the empty set, the entirety of Y , or anything
in between. P is called a determinantal point process if, when Y is a random subset drawn
according to P , we have, for every A ⊆ Y ,

P(A ⊆ Y ) = det(KA) (2.1)

for some real, symmetric N ×N matrix K indexed by the elements of Y .1 Here, KA ≡
1In general, K need not be symmetric. However, in the interest of simplicity, we proceed with this
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[Kij]i,j∈A denotes the restriction of K to the entries indexed by elements of A, and we
adopt det(K∅) = 1. Note that normalization is unnecessary here, since we are defining
marginal probabilities that need not sum to 1.

Since P is a probability measure, all principal minors det(KA) ofK must be nonneg-
ative, and thusK itself must be positive semidefinite. It is possible to show in the same
way that the eigenvalues of K are bounded above by one using Equation (2.27), which
we introduce later. These requirements turn out to be sufficient: any K, 0 � K � I ,
defines a DPP. This will be a consequence of Theorem 2.3.

We refer toK as the marginal kernel since it contains all the information needed to
compute the probability of any subsetA being included in Y . A few simple observations
follow from Equation (2.1). If A = {i} is a singleton, then we have

P(i ∈ Y ) = Kii . (2.2)

That is, the diagonal of K gives the marginal probabilities of inclusion for individual
elements of Y . Diagonal entries close to 1 correspond to elements of Y that are almost
always selected by the DPP. Furthermore, if A = {i, j} is a two-element set, then

P(i, j ∈ Y ) =

∣∣∣∣∣ Kii Kij

Kji Kjj

∣∣∣∣∣ (2.3)

= KiiKjj −KijKji (2.4)

= P(i ∈ Y )P(j ∈ Y )−K2
ij . (2.5)

Thus, the off-diagonal elements determine the negative correlations between pairs of
elements: large values of Kij imply that i and j tend not to co-occur.

Equation (2.5) demonstrates why DPPs are “diversifying”. If we think of the entries
of the marginal kernel as measurements of similarity between pairs of elements in Y ,
then highly similar elements are unlikely to appear together. If Kij =

√
KiiKjj , then i

and j are “perfectly similar” and do not appear together almost surely. Conversely, when
K is diagonal there are no correlations and the elements appear independently. Note
that DPPs cannot represent distributions where elements are more likely to co-occur
than if they were independent: correlations are always nonpositive.

Figure 2.1 shows the difference between sampling a set of points in the plane using a

assumption; it is not a significant limitation for our purposes.
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Figure 2.1: A set of points in the plane drawn from a DPP (left), and the same number
of points sampled independently using a Poisson point process (right).

DPP (withKij inversely related to the distance between points i and j), which leads to a
relatively uniformly spread set with good coverage, and sampling points independently,
which results in random clumping.

2.1.1 Examples

In this thesis, our focus is on using DPPs to model real-world data. However, many
theoretical point processes turn out to be exactly determinantal, which is one of the
main reasons they have received so much recent attention. In this section we briefly
describe a few examples; some of them are quite remarkable on their own, and as a
whole they offer some intuition about the types of distributions that are realizable by
DPPs. Technical details for each example can be found in the accompanying reference.

Descents in random sequences (Borodin et al., 2010)

Given a sequence of N random numbers drawn uniformly and independently from a
finite set (say, the digits 0–9), the locations in the sequence where the current number is
less than the previous number form a subset of {2, 3, . . . , N}. This subset is distributed as
a determinantal point process. Intuitively, if the current number is less than the previous
number, it is probably not too large, thus it becomes less likely that the next number
will be smaller yet. In this sense, the positions of decreases repel one another.

Non-intersecting random walks (Johansson, 2004)

Consider a set of k independent, simple, symmetric random walks of length T on the
integers. That is, each walk is a sequence x1, x2, . . . , xT where xi − xi+1 is either -1
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or +1 with equal probability. If we let the walks begin at positions x11, x21, . . . , xk1 and
condition on the fact that they end at positions x1T , x2T , . . . , xkT and do not intersect, then
the positions x1t , x2t , . . . , xkt at any time t are a subset of Z and distributed according to
a DPP. Intuitively, if the random walks do not intersect, then at any time step they are
likely to be far apart.

Edges in random spanning trees (Burton and Pemantle, 1993)

Let G be an arbitrary finite graph with N edges, and let T be a random spanning tree
chosen uniformly from the set of all the spanning trees of G. The edges in T form a
subset of the edges of G that is distributed as a DPP. The marginal kernel in this case
is the transfer-impedance matrix, whose entryKe1e2 is the expected signed number of
traversals of edge e2 when a random walk begins at one endpoint of e1 and ends at the
other (the graph edges are first oriented arbitrarily). Thus, edges that are in some sense
“nearby” in G are similar according to K, and as a result less likely to participate in a
single uniformly chosen spanning tree. As this example demonstrates, some DPPs assign
zero probability to sets whose cardinality is not equal to a particular k; in this case, k is
the number of nodes in the graph minus one—the number of edges in any spanning
tree. We will return to this issue in Chapter 5.

Eigenvalues of random matrices (Ginibre, 1965; Mehta and Gaudin, 1960)

LetM be a random matrix obtained by drawing every entry independently from the
complex normal distribution. This is the complex Ginibre ensemble. The eigenvalues of
M , which form a finite subset of the complex plane, are distributed according to a DPP. If
a Hermitian matrix is generated in the corresponding way, drawing each diagonal entry
from the normal distribution and each pair of off-diagonal entries from the complex
normal distribution, then we obtain the Gaussian unitary ensemble, and the eigenvalues
are now a DPP-distributed subset of the real line.

Aztec diamond tilings (Johansson, 2005a)

The Aztec diamond is a diamond-shaped union of lattice squares, as depicted in Fig-
ure 2.2a. (Half of the squares have been colored gray in a checkerboard pattern.) A
domino tiling is a perfect cover of the Aztec diamond using 2 × 1 rectangles, as in
Figure 2.2b. Suppose that we draw a tiling uniformly at random from among all possible
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(a) Aztec diamond (check-
ered)

(b) Domino tiling (c) DPP

Figure 2.2: Aztec diamonds.

tilings. (The number of tilings is known to be exponential in the width of the diamond.)
We can identify this tiling with the subset of the squares that are (a) painted gray in the
checkerboard pattern and (b) covered by the left half of a horizontal tile or the bottom
half of a vertical tile (see Figure 2.2c). This subset is distributed as a DPP.

2.2 L-ensembles

For the purposes of modeling real data, it is useful to slightly restrict the class of DPPs by
focusing on L-ensembles. First introduced by Borodin and Rains (2005), an L-ensemble
defines a DPP not through the marginal kernelK, but through a real, symmetric matrix
L indexed by the elements of Y :

PL(Y = Y ) ∝ det(LY ) . (2.6)

Whereas Equation (2.1) gave the marginal probabilities of inclusion for subsets A, Equa-
tion (2.6) directly specifies the atomic probabilities for every possible instantiation of
Y . As for K, it is easy to see that Lmust be positive semidefinite. However, since Equa-
tion (2.6) is only a statement of proportionality, the eigenvalues of L need not be less
than one; any positive semidefinite L defines an L-ensemble. The required normalization
constant can be given in closed form due to the fact that

∑
Y⊆Y det(LY ) = det(L+ I),

where I is the N ×N identity matrix. This is a special case of the following theorem.
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Theorem 2.1. For any A ⊆ Y ,∑
A⊆Y⊆Y

det(LY ) = det(L+ IĀ) , (2.7)

where IĀ is the diagonal matrix with ones in the diagonal positions corresponding to elements
of Ā = Y − A, and zeros everywhere else.

Proof. Suppose that A = Y ; then Equation (2.7) holds trivially. Now suppose inductively
that the theorem holds whenever Ā has cardinality less than k. Given A such that
|Ā| = k > 0, let i be an element of Y where i ∈ Ā. Splitting blockwise according to the
partition Y = {i} ∪ Y − {i}, we can write

L+ IĀ =

(
Lii + 1 Līi

Līi LY−{i} + IY−{i}−A

)
, (2.8)

where Līi is the subcolumn of the ith column of L whose rows correspond to ī, and
similarly for Līi. By multilinearity of the determinant, then,

det(L+ IĀ) =

∣∣∣∣∣ Lii Līi

Līi LY−{i} + IY−{i}−A

∣∣∣∣∣+
∣∣∣∣∣ 1 0

Līi LY−{i} + IY−{i}−A

∣∣∣∣∣ (2.9)

= det(L+ IA∪{i}) + det(LY−{i} + IY−{i}−A) . (2.10)

We can now apply the inductive hypothesis separately to each term, giving

det(L+ IĀ) =
∑

A∪{i}⊆Y⊆Y

det(LY ) +
∑

A⊆Y⊆Y−{i}

det(LY ) (2.11)

=
∑

A⊆Y⊆Y

det(LY ) , (2.12)

where we observe that every Y either contains i and is included only in the first sum, or
does not contain i and is included only in the second sum.

Thus we have
PL(Y = Y ) =

det(LY )

det(L+ I)
. (2.13)

As a shorthand, we will write PL(Y ) instead of PL(Y = Y ) when the meaning is clear.
We can write a version of Equation (2.5) for L-ensembles, showing that if L is a
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measure of similarity then diversity is preferred:

PL({i, j}) ∝ PL({i})PL({j})−
(

Lij

det(L+ I)

)2

. (2.14)

In this case we are reasoning about the full contents of Y rather than its marginals,
but the intuition is essentially the same. Furthermore, we have the following result of
Macchi (1975).

Theorem 2.2. An L-ensemble is a DPP, and its marginal kernel is

K = L(L+ I)−1 = I − (L+ I)−1 . (2.15)

Proof. Using Theorem 2.1, the marginal probability of a set A is

PL(A ⊆ Y ) =

∑
A⊆Y⊆Y det(LY )∑
Y⊆Y det(LY )

(2.16)

=
det(L+ IĀ)

det(L+ I)
(2.17)

= det
(
(L+ IĀ)(L+ I)−1

)
. (2.18)

We can use the fact that L(L+ I)−1 = I − (L+ I)−1 to simplify and obtain

PL(A ⊆ Y ) = det
(
IĀ(L+ I)−1 + I − (L+ I)−1

)
(2.19)

= det
(
I − IA(L+ I)−1

)
(2.20)

= det (IĀ + IAK) , (2.21)

where we let K = I − (L+ I)−1. Now, we observe that left multiplication by IA zeros
out all the rows of a matrix except those corresponding to A. Therefore we can split
blockwise using the partition Y = Ā ∪ A to get

det (IĀ + IAK) =

∣∣∣∣∣ I|Ā|×|Ā| 0

KAĀ KA

∣∣∣∣∣ (2.22)

= det (KA) . (2.23)
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Note thatK can be computed from an eigendecomposition of L =
∑N

n=1 λnvnv
>
n

by a simple rescaling of eigenvalues:

K =
N∑

n=1

λn
λn + 1

vnv
>
n . (2.24)

Conversely, we can ask when a DPP with marginal kernel K is also an L-ensemble. By
inverting Equation (2.15), we have

L = K(I −K)−1 , (2.25)

and again the computation can be performed by eigendecomposition. However, while
the inverse in Equation (2.15) always exists due to the positive coefficient on the identity
matrix, the inverse in Equation (2.25) may not. In particular, when any eigenvalue
of K achieves the upper bound of 1, the DPP is not an L-ensemble. We will see later
that the existence of the inverse in Equation (2.25) is equivalent to P giving nonzero
probability to the empty set. (This is somewhat analogous to the positive probability
assumption in the Hammersley-Clifford theorem for Markov random fields.) This is not
a major restriction, for two reasons. First, when modeling real data we must typically
allocate some nonzero probability for rare or noisy events, so when cardinality is one
of the aspects we wish to model, the condition is not unreasonable. Second, we will
show in Chapter 5 how to control the cardinality of samples drawn from the DPP, thus
sidestepping the representational limits of L-ensembles.

Modulo the restriction described above,K and L offer alternative representations
of DPPs. Under both representations, subsets that have higher diversity, as measured
by the corresponding kernel, have higher likelihood. However, whileK gives marginal
probabilities, L-ensembles directly model the atomic probabilities of observing each
subset of Y , which offers an appealing target for optimization. Furthermore, L need
only be positive semidefinite, while the eigenvalues of K are bounded above. For these
reasons we will focus our modeling efforts on DPPs represented as L-ensembles.
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(a)

(b) (c)

Figure 2.3: A geometric view of DPPs: each vector corresponds to an element of Y . (a)
The probability of a subset Y is the square of the volume spanned by its associated feature
vectors. (b) As the magnitude of an item’s feature vector increases, so do the probabilities
of sets containing that item. (c) As the similarity between two items increases, the
probabilities of sets containing both of them decrease.

2.2.1 Geometry

Determinants have an intuitive geometric interpretation. Let B be a D x N matrix
such that L = B>B. (Such a B can always be found for D ≤ N when L is positive
semidefinite.) Denote the columns of B by Bi for i = 1, 2, . . . , N . Then:

PL(Y ) ∝ det(LY ) = Vol2({Bi}i∈Y ) , (2.26)

where the right hand side is the squared |Y |-dimensional volume of the parallelepiped
spanned by the columns of B corresponding to elements in Y .

Intuitively, we can think of the columns ofB as feature vectors describing the elements
of Y . Then the kernel Lmeasures similarity using dot products between feature vectors,
and Equation (2.26) says that the probability assigned by a DPP to a set Y is related to
the volume spanned by its associated feature vectors. This is illustrated in Figure 2.3.

From this intuition we can verify several important DPP properties. Diverse sets are
more probable because their feature vectors are more orthogonal, and hence span larger
volumes. Items with parallel feature vectors are selected together with probability zero,
since their feature vectors define a degenerate parallelepiped. All else being equal, items
with large-magnitude feature vectors are more likely to appear, because they multiply



Chapter 2. Determinantal point processes 19

the spanned volumes for sets containing them.
We will revisit these intuitions in Section 3.1, where we decompose the kernel L so

as to separately model the direction and magnitude of the vectors Bi.

2.3 Properties

In this section we review several useful properties of DPPs.

Restriction

If Y is distributed as a DPP with marginal kernelK, then Y ∩ A, where A ⊆ Y , is also
distributed as a DPP, with marginal kernel KA.

Complement

If Y is distributed as a DPP with marginal kernel K, then Y − Y is also distributed as a
DPP, with marginal kernel K̄ = I −K. In particular, we have

P(A ∩ Y = ∅) = det(K̄A) = det(I −KA) , (2.27)

where I indicates the identity matrix of appropriate size. It may seem counterintuitive
that the complement of a diversifying process should also encourage diversity. However,
it is easy to see that

P(i, j 6∈ Y ) = 1− P(i ∈ Y )− P(j ∈ Y ) + P(i, j ∈ Y ) (2.28)

≤ 1− P(i ∈ Y )− P(j ∈ Y ) + P(i ∈ Y )P(j ∈ Y ) (2.29)

= P(i 6∈ Y ) + P(j 6∈ Y )− 1 + (1− P(i 6∈ Y ))(1− P(j 6∈ Y )) (2.30)

= P(i 6∈ Y )P(j 6∈ Y ) , (2.31)

where the inequality follows from Equation (2.5).

Domination

If K � K ′, that is, K ′ −K is positive semidefinite, then for all A ⊆ Y we have

det(KA) ≤ det(K ′
A) . (2.32)
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In other words, the DPP defined byK ′ is larger than the one defined byK in the sense
that it assigns higher marginal probabilities to every set A. An analogous result fails to
hold for L due to the normalization constant.

Scaling

If K = γK ′ for some 0 ≤ γ < 1, then for all A ⊆ Y we have

det(KA) = γ|A| det(K ′
A) . (2.33)

It is easy to see thatK defines the distribution obtained by taking a random set distributed
according to the DPP with marginal kernelK ′, and then independently deleting each of
its elements with probability 1− γ.

Cardinality

Let λ1, λ2, . . . , λN be the eigenvalues of L. Then |Y | is distributed as the number of
successes in N Bernoulli trials, where trial n succeeds with probability λn

λn+1
. This

fact follows from Theorem 2.3, which we prove in the next section. One immediate
consequence is that |Y | cannot be larger than rank(L). More generally, the expected
cardinality of Y is

E[|Y |] =
N∑

n=1

λn
λn + 1

= tr(K) , (2.34)

and the variance is

Var(|Y |) =
N∑

n=1

λn
(λn + 1)2

. (2.35)

Note that, by Equation (2.15), λ1

λ1+1
, λ2

λ2+1
, . . . , λN

λN+1
are the eigenvalues of K. Figure 2.4

shows a plot of the function f(λ) = λ
λ+1

. It is easy to see from this why the class of
L-ensembles does not include DPPs where the empty set has probability zero—at least
one of the Bernoulli trials would need to always succeed, and in turn one or more of the
eigenvalues of L would be infinite.

In some instances, the sum of Bernoullis may be an appropriate model for uncertain
cardinality in real-world data, for instance when identifying objects in images where the
number of objects is unknown in advance. In other situations, it may be more practical
to fix the cardinality of Y up front, for instance when a set of exactly ten search results is
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Figure 2.4: The mapping between eigenvalues of L and K.

desired, or to replace the sum of Bernoullis with an alternative cardinality model. We
show how these goals can be can be achieved in Chapter 5.

2.4 Inference

One of the primary advantages of DPPs is that, although the number of possible realiza-
tions of Y is exponential inN , many types of inference can be performed in polynomial
time. In this section we review the inference questions that can (and cannot) be answered
efficiently. We also discuss the empirical practicality of the associated computations and
algorithms, estimating the largest values of N that can be handled at interactive speeds
(within 2–3 seconds) as well as under more generous time and memory constraints.
The reference machine used for estimating real-world performance has eight Intel Xeon
E5450 3Ghz cores and 32GB of memory.

2.4.1 Normalization

As we have already seen, the partition function, despite being a sum over 2N terms, can be
written in closed form as det(L+ I). Determinants ofN ×N matrices can be computed
through matrix decomposition in O(N3) time, or reduced to matrix multiplication for
better asymptotic performance. The Coppersmith-Winograd algorithm, for example,
can be used to compute determinants in about O(N2.376) time. Going forward, we will
use ω to denote the exponent of whatever matrix multiplication algorithm is used.

Practically speaking, modern computers can calculate determinants up toN ≈ 5,000

at interactive speeds, or up to N ≈ 40,000 in about five minutes. When N grows
much larger, the memory required simply to store the matrix becomes limiting. (Sparse
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storage of larger matrices is possible, but computing determinants remains prohibitively
expensive unless the level of sparsity is extreme.)

2.4.2 Marginalization

The marginal probability of any set of items A can be computed using the marginal
kernel as in Equation (2.1). From Equation (2.27) we can also compute the marginal
probability that none of the elements in A appear. (We will see below how marginal
probabilities of arbitrary configurations can be computed using conditional DPPs.)

If the DPP is specified as an L-ensemble, then the computational bottleneck for
marginalization is the computation of K. The dominant operation is the matrix inver-
sion, which requires at least O(Nω) time by reduction to multiplication, or O(N3) using
Gauss-Jordan elimination or various matrix decompositions, such as the eigendecom-
position method proposed in Section 2.2. Since an eigendecomposition of the kernel
will be central to sampling, the latter approach is often the most practical when working
with DPPs.

Matrices up to N ≈ 2,000 can be inverted at interactive speeds, and problems up to
N ≈ 20,000 can be completed in about ten minutes.

2.4.3 Conditioning

The distribution obtained by conditioning a DPP on the event that none of the elements
in a set A appear is easy to compute. For B ⊆ Y not intersecting with A we have

PL(Y = B | A ∩ Y = ∅) = PL(Y = B)

PL(A ∩ Y = ∅)
(2.36)

=
det(LB)∑

B′:B′∩A=∅ det(LB′)
(2.37)

=
det(LB)

det(LĀ + I)
, (2.38)

where LĀ is the restriction of L to the rows and columns indexed by elements in Y − A.
In other words, the conditional distribution (over subsets of Y − A) is itself a DPP, and
its kernel LĀ is obtained by simply dropping the rows and columns of L that correspond
to elements in A.

We can also condition a DPP on the event that all of the elements in a set A are
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observed. For B not intersecting with A we have

PL(Y = A ∪B | A ⊆ Y ) =
PL(Y = A ∪B)

PL(A ⊆ Y )
(2.39)

=
det(LA∪B)∑

B′:B′∩A=∅ det(LA∪B′)
(2.40)

=
det(LA∪B)

det(L+ IĀ)
, (2.41)

where IĀ is the matrix with ones in the diagonal entries indexed by elements of Y − A
and zeros everywhere else. Though it is not immediately obvious, Borodin and Rains
(2005) showed that this conditional distribution (over subsets of Y − A) is again a DPP,
with a kernel given by

LA =
([
(L+ IĀ)

−1
]
Ā

)−1 − I . (2.42)

(Following the N ×N inversion, the matrix is restricted to rows and columns indexed
by elements in Y − A, then inverted again.) It is easy to show that the inverses exist if
and only if the probability of A appearing is nonzero.

Combining Equation (2.38) and Equation (2.41), we can write the conditional DPP
given an arbitrary combination of appearing and non-appearing elements:

PL(Y = Ain ∪B | Ain ⊆ Y , Aout ∩ Y = ∅) = det(LAin∪B)

det(LĀout + IĀin)
. (2.43)

The corresponding kernel is

LAin

Āout =
([
(LĀout + IĀin)−1

]
Āin

)−1 − I . (2.44)

Thus, the class of DPPs is closed under most natural conditioning operations.

General marginals

These formulas also allow us to compute arbitrary marginals. For example, applying
Equation (2.15) to Equation (2.42) yields the marginal kernel for the conditional DPP
given the appearance of A:

KA = I −
[
(L+ IĀ)

−1
]
Ā
. (2.45)
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Algorithm 1 Sampling from a DPP
Input: eigendecomposition {(vn, λn)}Nn=1 of L
J ← ∅
for n = 1, 2, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1

end for
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select i from Y with Pr(i) = 1
|V |
∑

v∈V (v
>ei)

2

Y ← Y ∪ i
V ← V⊥, an orthonormal basis for the subspace of V orthogonal to ei

end while
Output: Y

Thus we have
P(B ⊆ Y |A ⊆ Y ) = det(KA

B) . (2.46)

(Note thatKA is indexed by elements of Y − A, so this is only defined when A and B
are disjoint.) Using Equation (2.27) for the complement of a DPP, we can now compute
the marginal probability of any partial assignment, i.e.,

P(A ⊆ Y , B ∩ Y = ∅) = P(A ⊆ Y )P(B ∩ Y = ∅|A ⊆ Y ) (2.47)

= det(KA) det(I −KA
B) . (2.48)

Computing conditional DPP kernels in general is asymptotically as expensive as
the dominant matrix inversion, although in some cases (conditioning only on non-
appearance), the inversion is not necessary. In any case, conditioning is at most a small
constant factor more expensive than marginalization.

2.4.4 Sampling

Algorithm 1, due to Hough et al. (2006), gives an efficient algorithm for sampling a
configuration Y from a DPP. The input to the algorithm is an eigendecomposition of the
DPP kernel L. Note that ei is the ith standard basis N -vector, which is all zeros except
for a one in the ith position. We will prove the following theorem.

Theorem 2.3. Let L =
∑N

n=1 λnvnv
>
n be an orthonormal eigendecomposition of a positive
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semidefinite matrix L. Then Algorithm 1 samples Y ∼ PL.

Algorithm 1 has two main loops, corresponding to two phases of sampling. In the
first phase, a subset of the eigenvectors is selected at random, where the probability of
selecting each eigenvector depends on its associated eigenvalue. In the second phase, a
sample Y is produced based on the selected vectors. Note that on each iteration of the
second loop, the cardinality of Y increases by one and the dimension of V is reduced
by one. Since the initial dimension of V is simply the number of selected eigenvectors
(|J |), Theorem 2.3 has the previously stated corollary that the cardinality of a random
sample is distributed as a sum of Bernoulli variables.

To prove Theorem 2.3 we will first show that a DPP can be expressed as a mixture of
simpler, elementary DPPs. We will then show that the first phase chooses an elementary
DPP according to its mixing coefficient, while the second phase samples from the
elementary DPP chosen in phase one.

Definition 2.1. A DPP is called elementary if every eigenvalue of its marginal kernel is in
{0, 1}. We write PV , where V is a set of orthonormal vectors, to denote an elementary DPP
with marginal kernel KV =

∑
v∈V vv>.

We introduce the term “elementary” here; Hough et al. (2006) refer to elementary
DPPs as determinantal projection processes, sinceKV is an orthonormal projectionmatrix
to the subspace spanned by V . Note that, due to Equation (2.25), elementary DPPs are
not generally L-ensembles. We start with a technical lemma.

Lemma 2.1. LetWn for n = 1, 2, . . . , N be an arbitrary sequence of k×k rank-one matrices,
and letWni denote the ith column ofWn. LetWJ =

∑
n∈J Wn. Then

det(WJ) =
∑

n1,n2,...,nk∈J,

distinct

det([Wn11Wn22 . . .Wnkk]) . (2.49)

Proof. By multilinearity of the determinant,

det(WJ) =
∑
n∈J

det([Wn1WJ2 . . .WJk]) , (2.50)
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and, by induction,

det(WJ) =
∑

n1,n2,...,nk∈J

det([Wn11Wn22 . . .Wnkk]) . (2.51)

SinceWn has rank one, the determinant of any matrix containing two or more columns
ofWn is zero; thus the terms in the sum vanish unless n1, n2, . . . , nk are distinct.

Lemma 2.2. A DPP with kernel L =
∑N

n=1 λnvnv
>
n is a mixture of elementary DPPs:

PL =
1

det(L+ I)

∑
J⊆{1,2,...,N}

PVJ

∏
n∈J

λn , (2.52)

where VJ denotes the set {vn}n∈J .

Proof. Consider an arbitrary set A, with k = |A|. LetWn = [vnv
>
n ]A for n = 1, 2, . . . , N ;

note that all of theWn have rank one. From the definition of KVJ , the mixture distri-
bution on the right hand side of Equation (2.52) gives the following expression for the
marginal probability of A:

1

det(L+ I)

∑
J⊆{1,2,...,N}

det

(∑
n∈J

Wn

)∏
n∈J

λn . (2.53)

Applying Lemma 2.1, this is equal to

1

det(L+ I)

∑
J⊆{1,2,...,N}

∑
n1,...,nk∈J,

distinct

det([Wn11 . . .Wnkk])
∏
n∈J

λn (2.54)

=
1

det(L+ I)

N∑
n1,...,nk=1,

distinct

det([Wn11 . . .Wnkk])
∑

J⊇{n1,...,nk}

∏
n∈J

λn (2.55)

=
1

det(L+ I)

N∑
n1,...,nk=1,

distinct

det([Wn11 . . .Wnkk])
λn1

λn1 + 1
· · · λnk

λnk
+ 1

N∏
n=1

(λn + 1) (2.56)

=
N∑

n1,...,nk=1,

distinct

det
([

λn1

λn1 + 1
Wn11 . . .

λnk

λnk
+ 1

Wnkk

])
, (2.57)

using the fact that det(L+ I) =
∏N

n=1(λn+1). Applying Lemma 2.1 in reverse and then
the definition of K in terms of the eigendecomposition of L, we have that the marginal
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probability of A given by the mixture is

det

(
N∑

n=1

λn
λn + 1

Wn

)
= det(KA) . (2.58)

Since the two distributions agree on all marginals, they are equal.

Next, we show that elementary DPPs have fixed cardinality.

Lemma 2.3. If Y is drawn according to an elementary DPP PV , then |Y | = |V | with
probability one.

Proof. Since KV has rank |V |, PV (Y ⊆ Y ) = 0 whenever |Y | > |V |, so |Y | ≤ |V |. But
we also have

E [|Y |] = E

[
N∑

n=1

I(n ∈ Y )

]
(2.59)

=
N∑

n=1

E [I(n ∈ Y )] (2.60)

=
N∑

n=1

Knn = tr(K) = |V | . (2.61)

Thus |Y | = |V | almost surely.

We can now prove the theorem.

Proof of Theorem 2.3. Lemma 2.2 says that the mixture weight of PVJ is given by the
product of the eigenvalues λn corresponding to the eigenvectors vn ∈ VJ , normalized
by det(L+ I) =

∏N
n=1(λn + 1). This shows that the first loop of Algorithm 1 selects an

elementary DPP PV with probability equal to its mixture component. All that remains
is to show that the second loop samples Y ∼ PV .

Let B represent the matrix whose rows are the eigenvectors in V , so thatKV = B>B.
Using the geometric interpretation of determinants introduced in Section 2.2.1, det(KV

Y )

is equal to the squared volume of the parallelepiped spanned by {Bi}i∈Y . Note that since
V is an orthonormal set, Bi is just the projection of ei onto the subspace spanned by V .

Let k = |V |. By Lemma 2.3 and symmetry, we can consider without loss of generality
a single Y = {1, 2, . . . , k}. Using the fact that any vector both in the span of V and
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perpendicular to ei is also perpendicular to the projection of ei onto the span of V , by
the base × height formula for the volume of a parallelepiped we have

Vol ({Bi}i∈Y ) = ‖B1‖Vol
(
{Proj⊥e1

Bi}ki=2

)
, (2.62)

where Proj⊥e1
is the projection operator onto the subspace orthogonal to e1. Proceeding

inductively,

Vol ({Bi}i∈Y ) = ‖B1‖‖Proj⊥e1
B2‖ · · · ‖Proj⊥e1,...,ek−1

Bk‖ . (2.63)

Assume that, as iteration j of the second loop in Algorithm 1 begins, we have already
selected y1 = 1, y2 = 2, . . . , yj−1 = j − 1. Then V in the algorithm has been updated to
an orthonormal basis for the subspace of the original V perpendicular to e1, . . . , ej−1,
and the probability of choosing yj = j is exactly

1

|V |
∑
v∈V

(v>ej)
2 =

1

k − j + 1
‖Proj⊥e1,...,ej−1

Bj‖2 . (2.64)

Therefore, the probability of selecting the sequence 1, 2, . . . , k is

1

k!
‖B1‖2‖Proj⊥e1

B2‖2 · · · ‖Proj⊥e1,...,ek−1
Bk‖2 =

1

k!
Vol2 ({Bi}i∈Y ) . (2.65)

Since volume is symmetric, the argument holds identically for all of the k! orderings of
Y . Thus the total probability that Algorithm 1 selects Y is det(KV

Y ).

Corollary 2.1. Algorithm 1 generates Y in uniformly random order.

Discussion

To get a feel for the sampling algorithm, it is useful to visualize the distributions used to
select i at each iteration, and to see how they are influenced by previously chosen items.
Figure 2.5a shows this progression for a simple DPP where Y is a finely sampled grid of
points in [0, 1], and the kernel is such that points are more similar the closer together
they are. Initially, the eigenvectors V give rise to a fairly uniform distribution over points
in Y , but as each successive point is selected and V is updated, the distribution shifts to
avoid points near those already chosen. Figure 2.5b shows a similar progression for a
DPP over points in the unit square.
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Figure 2.5: Sampling DPP over one-dimensional (top) and two-dimensional (bottom)
particle positions. Red circles indicate already selected positions. On the bottom, lighter
color corresponds to higher probability. The DPP naturally reduces the probabilities for
positions that are similar to those already selected.
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The sampling algorithm also offers an interesting analogy to clustering. If we think
of the eigenvectors of L as representing soft clusters, and the eigenvalues as representing
their strengths—the way we do for the eigenvectors and eigenvalues of the Laplacian
matrix in spectral clustering—then a DPP can be seen as performing a clustering of
the elements in Y , selecting a random subset of clusters based on their strength, and
then choosing one element per selected cluster. Of course, the elements are not chosen
independently and cannot be identified with specific clusters; instead, the second loop of
Algorithm 1 coordinates the choices in a particular way, accounting for overlap between
the eigenvectors.

Algorithm 1 runs in time O(Nk3), where k = |V | is the number of eigenvectors
selected in phase one. The most expensive operation is the O(Nk2) Gram-Schmidt or-
thonormalization required to compute V⊥. If k is large, this can be reasonably expensive,
but for most applications we do not want high-cardinality DPPs. (And if we want very
high-cardinality DPPs, we can potentially save time by using Equation (2.27) to sample
the complement instead.) In practice, the initial eigendecomposition of L is often the
computational bottleneck, requiring O(N3) time. Modern multi-core machines can
compute eigendecompositions up to N ≈ 1,000 at interactive speeds of a few seconds,
or larger problems up to N ≈ 10,000 in around ten minutes. In some instances, it may
be cheaper to compute only the top k eigenvectors; since phase one tends to choose
eigenvectors with large eigenvalues anyway, this can be a reasonable approximation when
the kernel is expected to be low rank. Note that when multiple samples are desired, the
eigendecomposition needs to be performed only once.

Deshpande and Rademacher (2010) recently proposed a (1− ε)-approximate algo-
rithm for sampling that runs in timeO(N2 logN k2

ε2
+N logωN k2ω+1

ε2ω
log(k

ε
logN))when

L is already decomposed as a Gram matrix, L = B>B. When B is known but an eigen-
decomposition is not (and N is sufficiently large), this may be significantly faster than
the exact algorithm.

2.4.5 Finding the mode

Finding the mode of a DPP—that is, finding the set Y ⊆ Y that maximizes PL(Y )—is
NP-hard. In conditional models, this problem is sometimes referred to as maximum a
posteriori (or MAP) inference, and it is also NP-hard for most general structured models
such as Markov random fields. Hardness was first shown for DPPs by Ko et al. (1995),
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who studied the closely-related maximum entropy sampling problem: the entropy of a
set of jointly Gaussian random variables is given (up to constants) by the log-determinant
of their covariance matrix; thus finding the maximum entropy subset of those variables
requires finding the principal covariance submatrix with maximum determinant. Here,
we adapt the argument of Çivril and Magdon-Ismail (2009), who studied the problem of
finding maximum-volume submatrices.

Theorem 2.4. Let dpp-mode be the optimization problem of finding, for a positive semidefinite
N × N input matrix L indexed by elements of Y , the maximum value of det(LY ) over all
Y ⊆ Y . dpp-mode is NP-hard, and furthermore it is NP-hard even to approximate dpp-mode
to a factor of 8

9
+ ε.

Proof. We reduce from exact 3-cover (X3C). An instance of X3C is a set S and a collection
C of three-element subsets of S; the problem is to decide whether there is a sub-collection
C ′ ⊆ C such that every element of S appears exactly once in C ′ (that is, C ′ is an exact
3-cover). X3C is known to be NP-complete.

The reduction is as follows. Let Y = {1, 2, . . . , |C|}, and let B be a |S| × |C|matrix
where Bsi =

1√
3
if Ci contains s ∈ S and zero otherwise. Define L = γB>B, where

1 < γ ≤ 9
8
. Note that the diagonal of L is constant and equal to γ, and an off-diagonal

entry Lij is zero if and only if Ci and Cj do not intersect. L is positive semidefinite by
construction, and the reduction requires only polynomial time. Let k = |S|

3
. We will

show that the maximum value of det(LY ) is greater than γk−1 if and only if C contains
an exact 3-cover of S.

(←) If C ′ ⊆ C is an exact 3-cover of S, then it must contain exactly k 3-sets. Letting
Y be the set of indices in C ′, we have LY = γI , and thus its determinant is γk > γk−1.

(→) Suppose there is no 3-cover of S in C. Let Y be an arbitrary subset of Y . If
|Y | < k, then

det(LY ) ≤
∏
i∈Y

Lii = γ|Y | ≤ γk−1 . (2.66)

Now suppose |Y | ≥ k, and assume without loss of generality that Y = {1, 2, . . . , |Y |}.
We have LY = γB>

Y BY , and

det(LY ) = γ|Y |Vol2 ({Bi}i∈Y ) . (2.67)
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By the base × height formula,

Vol ({Bi}i∈Y ) = ‖B1‖‖Proj⊥B1
B2‖ · · · ‖Proj⊥B1,...,B|Y |−1

B|Y |‖ . (2.68)

Note that, since the columns of B are normalized, each term in the product is at most
one. Furthermore, at least |Y |−k+1 of the terms must be strictly less than one, because
otherwise there would be k orthogonal columns, which would correspond to a 3-cover.
By the construction of B, if two columns Bi and Bj are not orthogonal then Ci and Cj

overlap in at least one of three elements, so we have

‖Proj⊥Bj
Bi‖ = ‖Bi − (B>

i Bj)Bj‖ (2.69)

≤ ‖Bi −
1

3
Bj‖ (2.70)

≤
√

8

9
. (2.71)

Therefore,

det(LY ) ≤ γ|Y |
(
8

9

)|Y |−k+1

(2.72)

≤ γk−1 , (2.73)

since γ ≤ 9
8
.

We have shown that the existence of a 3-cover implies the optimal value of dpp-mode is
at least γk, while the optimal value cannot be more than γk−1 if there is no 3-cover. Thus
any algorithm that can approximate dpp-mode to better than a factor of 1

γ
can be used to

solve X3C in polynomial time. We can choose γ = 9
8
to show that an approximation

ratio of 8
9
+ ε is NP-hard.

Since there are only |C| possible cardinalities for Y , Theorem 2.4 shows that dpp-mode
is NP-hard even under cardinality constraints.

Ko et al. (1995) propose an exact, exponential branch-and-bound algorithm for find-
ing the mode using greedy heuristics to build candidate sets; they tested their algorithm
on problems up toN = 75, successfully finding optimal solutions in up to about an hour.
Modern computers are likely a few orders of magnitude faster; however, this algorithm
is still probably impractical for applications with large N . Çivril and Magdon-Ismail
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(2009) propose an efficient greedy algorithm for finding a set of size k, and prove that it
achieves an approximation ratio of O( 1

k!
). While this guarantee is relatively poor for all

but very small k, in practice the results may be useful nonetheless.

Submodularity

PL is log-submodular; that is,

logPL(Y ∪ {i})− logPL(Y ) ≥ logPL(Y
′ ∪ {i})− logPL(Y

′) (2.74)

whenever Y ⊆ Y ′ ⊆ Y − {i}. Intuitively, adding elements to Y yields diminishing
returns as Y gets larger. (This is easy to show by a volume argument.) Submodular
functions can be minimized in polynomial time (Schrijver, 2000), and many results
exist for approximately maximizing monotone submodular functions, which have the
special property that supersets always have a higher function value than their subsets
(Nemhauser et al., 1978; Fisher et al., 1978; Feige, 1998). In Section 4.2.1 we will discuss
how these kinds of greedy algorithms can be adapted for DPPs. However, in general PL

is highly non-monotone, since the addition of even a single element can decrease the
probability to zero.

Recently, Feige et al. (2007) showed that nonnegative non-monotone submodular
functions can also be approximately maximized in polynomial time using a local search
algorithm, achieving an approximation ratio of 2

5
. Lee et al. (2009) later extended these

results to knapsack and matroid-constrained maximizations; for example, they show
a 1

5
− ε approximation ratio when constraining the set Y to have exactly k elements.

These results are promising, and the algorithms they propose may prove useful for DPPs.
Nonetheless, because they apply only to nonnegative functions andPL is log-submodular,
it is necessary to shift the values of logPL to apply the bounds. Define

η+ = max
Y⊆Y
PL(Y ) , η− = min

Y⊆Y
PL(Y ) . (2.75)

In general η− may not be positive, but assume we smooth the DPP slightly to ensure
that it is. If an algorithm returns an approximate maximizer Ŷ with an approximation
ratio of α, we have

logPL(Ŷ )− log η−

log η+ − log η−
≥ α , (2.76)
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which implies
PL(Ŷ ) ≥ exp

(
α log η+ + (1− α) log η−

)
. (2.77)

This “softmin” average is biased towards η−. If the odds ratio η+

η−
between the most likely

and least likely sets is β, then Equation (2.77) gives

PL(Ŷ ) ≥ η+

β(1−α)
. (2.78)

Thus unless the dynamic range of the DPP is very small, the guaranteed approximation
ratio is likely to be poor.

2.5 Open questions

While many properties of DPPs are well-understood, some open questions remain. We
briefly mention two of the most relevant ones.

2.5.1 Concavity of entropy

The Shannon entropy of the DPP with marginal kernel K is given by

H(K) = −
∑
Y⊆Y

P(Y ) logP(Y ) . (2.79)

Conjecture 2.1 (Lyons (2003)). H(K) is concave in K.

While numerical simulation strongly suggests that the conjecture is true, we do not
know of a proof.

2.5.2 Sum of squares

In order to calculate, for example, the Hellinger distance between a pair of DPPs, it
would be useful to be able to compute quantities of the form∑

Y⊆Y

det(LY )
2 . (2.80)

To our knowledge it is not currently known whether it is possible to compute such
quantities efficiently.
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2.6 Related processes

Historically, a wide variety of point process models have been proposed and applied to
applications involving diverse subsets, particularly in settings where the items can be
seen as points in a physical space and diversity is taken to mean some sort of “spreading”
behavior. However, DPPs are essentially unique among this class in having efficient and
exact algorithms for probabilistic inference, which is why they are particularly appealing
models for machine learning applications. In this section we briefly survey the wider
world of point processes and discuss the computational properties of alternative models;
we will focus on point processes that lead to what is variously described as diversity,
repulsiveness, (over)dispersion, regularity, order, and inhibition.

2.6.1 Poisson point processes

Perhaps the most fundamental point process is the Poisson point process, which is
depicted on the right side of Figure 2.1 (Daley and Vere-Jones, 2003). While defined
for continuous Y , in the discrete setting the Poisson point process can be simulated by
flipping a coin independently for each item, and including those items for which the
coin comes up heads. Formally,

P(Y = Y ) =
∏
i∈Y

pi
∏
i 6∈Y

(1− pi) , (2.81)

where pi ∈ [0, 1] is the bias of the ith coin. The process is called stationary when pi does
not depend on i; in a spatial setting this means that no region has higher density than
any other region.

A random set Y distributed as a Poisson point process has the property that whenever
A andB are disjoint subsets ofY , the random variablesY ∩A andY ∩B are independent;
that is, the points in Y are not correlated. It is easy to see that DPPs generalize Poisson
point processes by choosing themarginal kernelK withKii = pi andKij = 0, i 6= j. This
implies that inference for Poisson point processes is at least as efficient as for DPPs; in fact,
it is more efficient, since for instance it is easy to compute the most likely configuration.
However, since Poisson point processes do not model correlations between variables,
they are rather uninteresting for most real-world applications.

Addressing this weakness, various procedural modifications of the Poisson process
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have been proposed in order to introduce correlations between items. While such con-
structions can be simple and intuitive, leading to straightforward sampling algorithms,
they tend to make general statistical inference difficult.

Matérn repulsive processes

Matérn (1960, 1986) proposed a set of techniques for thinning Poisson point processes
in order to induce a type of repulsion when the items are embedded in a Euclidean
space. The Type I process is obtained from a Poisson set Y by removing all items in Y

that lie within some radius of another item in Y . That is, if two items are close to each
other, they are both removed; as a result all items in the final process are spaced at least
a fixed distance apart. The Type II Matérn repulsive process, designed to achieve the
same minimum distance property while keeping more items, begins by independently
assigning each item in Y a uniformly random “time” in [0, 1]. Then, any item within a
given radius of a point having a smaller time value is removed. Under this construction,
when two items are close to each other only the later one is removed. Still, an item may
be removed due to its proximity with an earlier item that was itself removed. This leads
to the Type III process, which proceeds dynamically, eliminating items in time order
whenever an earlier point which has not been removed lies within the radius.

Inference for the Matérn processes is computationally daunting. First and second
order moments can be computed for Types I and II, but in those cases computing the
likelihood of a set Y is seemingly intractable (Møller et al., 2010). Recent work by Huber
and Wolpert (2009) shows that it is possible to compute likelihood for certain restricted
Type III processes, but computing moments cannot be done in closed form. In the
general case, likelihood for Type III processes must be estimated using an expensive
Markov chain Monte Carlo algorithm.

The Matérn processes are called “hard-core” because they strictly enforce a minimum
radius between selected items. While this property leads to one kind of diversity, it is
somewhat limited, and due to the procedural definition it is difficult to characterize the
side effects of the thinning process in a general way. Stoyan and Stoyan (1985) considered
an extension where the radius is itself chosen randomly, which may be more natural for
certain settings, but it does not alleviate the computational issues.
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Random sequential adsorption

The Matérn repulsive processes are related in spirit to the random sequential adsorption
(RSA) model, which has been used in physics and chemistry to model particles that
bind to two-dimensional surfaces, e.g., proteins on a cell membrane (Tanemura, 1979;
Finegold and Donnell, 1979; Feder, 1980; Swendsen, 1981; Hinrichsen et al., 1986;
Ramsden, 1993). RSA is described generatively as follows. Initially, the surface is empty;
iteratively, particles arrive and bind uniformly at random to a location from among all
locations that are not within a given radius of any previously bound particle. When no
such locations remain (the “jamming limit”), the process is complete.

Like the Matérn processes, RSA is a hard-core model, designed primarily to capture
packing distributions, with much of the theoretical analysis focused on the achievable
density. If the set of locations is further restricted at each step to those found in an
initially selected Poisson set Y , then it is equivalent to a Matérn Type III process (Huber
and Wolpert, 2009); it therefore shares the same computational burdens.

2.6.2 Gibbs and Markov point processes

While manipulating the Poisson process procedurally has some intuitive appeal, it seems
plausible that a more holistically-defined process might be easier to work with, both ana-
lytically and algorithmically. TheGibbs point process provides such an approach, offering
a general framework for incorporating correlations among selected items (Preston, 1976;
Ripley and Kelly, 1977; Ripley, 1991; Van Lieshout, 2000; Møller and Waagepetersen,
2004, 2007; Daley and Vere-Jones, 2008). The Gibbs probability of a set Y is given by

P(Y = Y ) ∝ exp(−U(Y )) , (2.82)

where U is an energy function. Of course, this definition is fully general without further
constraints on U . A typical assumption is that U decomposes over subsets of items in Y ;
for instance

exp(−U(Y )) =
∏

A⊆Y,|A|≤k

ψ|A|(A) (2.83)

for some small constant order k and potential functions ψ. In practice, the most common
case is k = 2, which is sometimes called a pairwise interaction point process (Diggle
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et al., 1987):
P(Y = Y ) ∝

∏
i∈Y

ψ1(i)
∏
i,j⊆Y

ψ2(i, j) . (2.84)

In spatial settings, a Gibbs point process whose potential functions are identically 1
whenever their input arguments do not lie within a ball of fixed radius—that is, whose
energy function can be decomposed into only local terms—is called a Markov point
process. A number of specific Markov point processes have become well-known.

Pairwise Markov processes

Strauss (1975) introduced a simple pairwise Markov point process for spatial data in
which the potential function ψ2(i, j) is piecewise constant, taking the value 1 whenever
i and j are at least a fixed radius apart, and the constant value γ otherwise. When γ > 1,
the resulting process prefers clustered items. (Note that γ > 1 is only possible in the
discrete case; in the continuous setting the distribution becomes non-integrable.) For
our purposes we are more interested in the case 0 < γ < 1, where configurations in
which selected items are near one another are discounted. When γ = 0, the resulting
process becomes hard-core, but in general the Strauss process is “soft-core”, preferring
but not requiring diversity.

The Strauss process is typical of pairwise Markov processes in that its potential
function ψ2(i, j) = ψ(|i− j|) depends only on the distance between its arguments. A
variety of alternative definitions for ψ(·) have been proposed (Ripley and Kelly, 1977;
Ogata and Tanemura, 1984). For instance,

ψ(r) = 1− exp(−(r/σ)2) (2.85)

ψ(r) = exp(−(σ/r)n), n > 2 (2.86)

ψ(r) = min(r/σ, 1) (2.87)

where σ controls the degree of repulsion in each case. Each definition leads to a point
process with a slightly different concept of diversity.

Area-interaction point processes

Baddeley and Van Lieshout (1995) proposed a non-pairwise spatial Markov point process
called the area-interaction model, where U(Y ) is given by log γ times the total area
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contained in the union of discs of fixed radius centered at all of the items in Y . When
γ > 1, we have log γ > 0 and the process prefers sets whose discs cover as little area as
possible, i.e., whose items are clustered. When 0 < γ < 1, log γ becomes negative, so
the process prefers “diverse” sets covering as much area as possible.

If none of the selected items fall within twice the disc radius of each other, then
exp(−U(Y )) can be decomposed into potential functions over single items, since the
total area is simply the sum of the individual discs. Similarly, if each disc intersects with at
most one other disc, the area-interaction process can be written as a pairwise interaction
model. However, in general, an unbounded number of items might appear in a given
disc; as a result the area-interaction process is an infinite-order Gibbs process. Since
items only interact when they are near one another, however, local potential functions
are sufficient and the process is Markov.

Computational issues

Markov point processes have many intuitive properties. In fact, it is not difficult to see
that, for discrete ground sets Y , the Markov point process is equivalent to a Markov ran-
dom field (MRF) on binary variables corresponding to the elements ofY . In Section 3.2.2
we will return to this equivalence in order to discuss the relative expressive possibilities of
DPPs and MRFs. For now, however, we simply observe that, as for MRFs with negative
correlations, repulsive Markov point processes are computationally intractable. Even
computing the normalizing constant for Equation (2.82) is NP-hard in the cases outlined
above (Daley and Vere-Jones, 2003; Møller and Waagepetersen, 2004).

On the other hand, quite a bit of attention has been paid to approximate inference
algorithms for Markov point processes, employing pseudolikelihood (Besag, 1977; Besag
et al., 1982; Jensen and Moller, 1991; Ripley, 1991), Markov chain Monte Carlo methods
(Ripley and Kelly, 1977; Besag and Green, 1993; Häggström et al., 1999; Berthelsen
and Møller, 2006), and other approximations (Ogata and Tanemura, 1985; Diggle et al.,
1994). Nonetheless, in general these methods are slow and/or inexact, and closed-form
expressions for moments and densities rarely exist (Møller and Waagepetersen, 2007). In
this sense the DPP is unique.
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2.6.3 Generalizations of determinants

The determinant of a k × k matrixK can be written as a polynomial of degree k in the
entries of K; in particular,

det(K) =
∑
π

sgn(π)
k∏

i=1

Ki,π(i) , (2.88)

where the sum is over all permutations π on 1, 2, . . . , k, and sgn is the permutation
sign function. In a DPP, of course, when K is (a submatrix of) the marginal kernel
Equation (2.88) gives the appearance probability of the k items indexing K. A natural
question is whether generalizations of this formula give rise to alternative point processes
of interest.

Immanantal point processes

In fact, Equation (2.88) is a special case of the more general matrix immanant, where the
sgn function is replaced by χ, the irreducible representation-theoretic character of the
symmetric group on k items corresponding to a particular partition of 1, 2, . . . , k. When
the partition has k parts, that is, each element is in its own part, χ(π) = sgn(π) and we
recover the determinant. When the partition has a single part, χ(π) = 1 and the result is
the permanent of K. The associated permanental process was first described alongside
DPPs by Macchi (1975), who referred to it as the “boson process.” Bosons do not obey
the Pauli exclusion principle, and the permanental process is in some ways the opposite
of a DPP, preferring sets of points that are more tightly clustered, or less diverse, than
if they were independent. Several recent papers have considered its properties in some
detail (Hough et al., 2006; McCullagh and Møller, 2006). Furthermore, Diaconis and
Evans (2000) considered the point processes induced by general immanants, showing
that they are well defined and in some sense “interpolate” between determinantal and
permanental processes.

Computationally, obtaining the permanent of a matrix is #P-complete (Valiant, 1979),
making the permanental process difficult to work with in practice. Complexity results
for immanants are less definitive, with certain classes of immanants apparently hard to
compute (Bürgisser, 2000; Brylinski and Brylinski, 2003), while some upper bounds on
complexity are known (Hartmann, 1985; Barvinok, 1990), and at least one non-trivial
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case is efficiently computable (Grone and Merris, 1984). It is not clear whether the latter
result provides enough leverage to perform inference beyond computing marginals.

α-determinantal point processes

An alternative generalization of Equation (2.88) is given by the so-called α-determinant,
where sgn(π) is replaced by αk−ν(π), with ν(π) counting the number of cycles in π

(Vere-Jones, 1997; Hough et al., 2006). When α = −1 the determinant is recovered, and
when α = +1 we have again the permanent. Relatively little is known for other values
of α, although Shirai and Takahashi (2003a) conjecture that the associated process exists
when 0 ≤ α ≤ 2 but not when α > 2. Whether α-determinantal processes have useful
properties for modeling or computational advantages remains an open question.

Hyperdeterminantal point processes

A third possible generalization of Equation (2.88) is the hyperdeterminant originally
proposed by Cayley (1843) and discussed in the context of point processes by Evans
and Gottlieb (2009). Whereas the standard determinant operates on a two-dimensional
matrix with entries indexed by pairs of items, the hyperdeterminant operates on higher-
dimensional kernel matrices indexed by sets of items. The hyperdeterminant potentially
offers additional modeling power, and Evans and Gottlieb (2009) show that some useful
properties of DPPs are preserved in this setting. However, so far relatively little is known
about these processes.

2.6.4 Quasirandom processes

Monte Carlo methods rely on draws of random points in order to approximate quantities
of interest; randomness guarantees that, regardless of the function being studied, the
estimates will be accurate in expectation and converge in the limit. However, in practice
we get to observe only a finite set of values drawn from the random source. If, by
chance, this set is “bad”, the resulting estimate may be poor. This concern has led to the
development of so-called quasirandom sets, which are in fact deterministically generated,
but can be substituted for random sets in some instances to obtain improved convergence
guarantees (Niederreiter, 1992; Sobol, 1998).

In contrast with pseudorandom generators, which attempt to mimic randomness by
satisfying statistical tests that ensure unpredictability, quasirandom sets are not designed
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to appear random, and their elements are not (even approximately) independent. Instead,
they are designed to have low discrepancy; roughly speaking, low-discrepancy sets are
“diverse” in that they cover the sample space evenly. Consider a finite subset Y of [0, 1]D,
with elements x(i) = (x

(i)
1 , x

(i)
2 , . . . , x

(i)
D ) for i = 1, 2, . . . , k. Let Sx = [0, x1)× [0, x2)×

· · · × [0, xD) denote the box defined by the origin and the point x. The discrepancy of
Y is defined as follows.

disc(Y ) = max
x∈Y

∣∣∣∣ |Y ∩ Sx|
k

− Vol(Sx)

∣∣∣∣ . (2.89)

That is, the discrepancy measures how the empirical density |Y ∩ Sx|/k differs from the
uniform density Vol(Sx) over the boxes Sx. Quasirandom sets with low discrepancy
cover the unit cube with more uniform density than do pseudorandom sets, analogously
to Figure 2.1.

This deterministic uniformity property makes quasirandom sets useful for Monte
Carlo estimation via (among other results) the Koksma-Hlawka inequality (Hlawka,
1961; Niederreiter, 1992). For a function f with bounded variation V (f) on the unit
cube, the inequality states that∣∣∣∣∣1k∑

x∈Y

f(x)−
∫
[0,1]D

f(x)dx

∣∣∣∣∣ ≤ V (f)disc(Y ) . (2.90)

Thus, low-discrepancy sets lead to accurate quasi-Monte Carlo estimates. In contrast
to typical Monte Carlo guarantees, the Koksma-Hlawka inequality is deterministic.
Moreover, since the rate of convergence for standard stochastic Monte Carlo methods
is k−1/2, this result is an (asymptotic) improvement when the discrepancy diminishes
faster than k−1/2.

In fact, it is possible to construct quasirandom sequences where the discrepancy of
the first k elements is O((log k)D/k); the first such sequence was proposed by Halton
(1960). The Sobol sequence (Sobol, 1967), introduced later, offers improved uniformity
properties and can be generated efficiently (Bratley and Fox, 1988).

For our purposes it seems plausible that, due to their uniformity characteristics,
low-discrepancy sets could be used as computationally efficient but non-probabilistic
tools for working with data exhibiting diversity. An algorithm generating quasirandom
sets could be seen as an efficient prediction procedure if made to depend somehow on
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input data and a set of learned parameters. However, to our knowledge no work has yet
addressed this possibility; in this thesis we focus on probabilistic models, leaving these
questions to future work.



3
Representation and algorithms

Determinantal point processes come with a deep and beautiful theory, and, as we have
seen, exactly characterize many theoretical processes. However, they are also promising
models for real-world data that exhibit diversity, and our focus in this thesis is on making
such applications as intuitive, practical, and computationally efficient as possible. In this
chapter, we present a variety of fundamental techniques and algorithms that serve these
goals and form the basis of the extensions we develop later.

We begin by describing a decomposition of the DPP kernel that offers an intuitive
tradeoff between a unary model of quality over the items in the ground set and a global
model of diversity. The geometric intuitions from Chapter 2 extend naturally to this
decomposition, which we employ almost universally in the following chapters. Splitting
the model into quality and diversity components then allows us to make a comparative
study of expressiveness—that is, the range of distributions that the model can describe.
We discuss the expressive power of a DPP and compare it to that of pairwise Markov
random fields with negative interactions, showing that the two models are incomparable
in general but exhibit qualitatively similar characteristics, despite the computational

44
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advantages offered by DPPs.
Next, we turn to the challenges imposed by large data sets, which are common in

practice. We first address the case where N , the number of items in the ground set, is
very large. In this setting, the super-linear number of operations required for most DPP
inference algorithms can be prohibitively expensive. However, by introducing a dual
representation of a DPP we show that efficient DPP inference remains possible when
the kernel is low-rank. When the kernel is not low-rank, we prove that a simple approxi-
mation based on random projections dramatically speeds inference while guaranteeing
that the deviation from the original distribution is bounded. These techniques will be
especially useful in Chapter 6, when we consider exponentially large N .

Finally, we discuss some alternative formulas for the likelihood of a set Y in terms
of the marginal kernel K. Compared to the L-ensemble formula in Equation (2.13),
these may be analytically more convenient, since they do not involve ratios or arbitrary
principal minors.

3.1 Quality vs. diversity

An important practical concern for modeling is understandability; that is, practitioners
should be able to interpret the parameters of the model in an intuitive way. While the
entries of the DPP kernel are not totally opaque in that they can be seen as measures of
similarity—reflecting our primary qualitative characterization of DPPs as diversifying
processes—in most practical situations we want diversity to be balanced against some
underlying preferences for different items in Y . In this section, we propose a decom-
position of the DPP that more directly illustrates the tension between diversity and a
per-item measure of quality.

In Chapter 2 we observed that the DPP kernel L can be written as a Gram matrix,
L = B>B, where the columns of B are vectors representing items in the set Y . We
now take this one step further, writing each column Bi as the product of a quality term
qi ∈ R+ and a vector of normalized diversity features φi ∈ RD, ‖φi‖ = 1. (While D = N

is sufficient to decompose any DPP, we keepD arbitrary since in practice we may wish to
use high-dimensional feature vectors.) The entries of the kernel can now be written as

Lij = qiφ
>
i φjqj . (3.1)
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We can think of qi ∈ R+ as measuring the intrinsic “goodness” of an item i, and
φ>
i φj ∈ [−1, 1] as a signed measure of similarity between items i and j. We use the

following shorthand for similarity:

Sij ≡ φ>
i φj =

Lij√
LiiLjj

. (3.2)

This decomposition of L has two main advantages. First, it implicitly enforces the
constraint that Lmust be positive semidefinite, which can potentially simplify learning
(see Chapter 4). Second, it allows us to independently model quality and diversity, and
then combine them into a unified model. In particular, we have:

PL(Y ) ∝

(∏
i∈Y

q2i

)
det(SY ) , (3.3)

where the first term increases with the quality of the selected items, and the second
term increases with the diversity of the selected items. We will refer to q as the quality
model and S or φ as the diversity model. Without the diversity model, we would choose
high-quality items, but we would tend to choose similar high-quality items over and
over. Without the quality model, we would get a very diverse set, but we might fail to
include the most important items in Y , focusing instead on low-quality outliers. By
combining the two models we can achieve a more balanced result.

Returning to the geometric intuitions from Section 2.2.1, the determinant of LY is
equal to the squared volume of the parallelepiped spanned by the vectors qiφi for i ∈ Y .
The magnitude of the vector representing item i is qi, and its direction is φi. Figure 3.1
(reproduced from the previous chapter) now makes clear how DPPs decomposed in
this way naturally balance the two objectives of high quality and high diversity. Going
forward, we will nearly always assume that our models are decomposed into quality and
diversity components. This provides us not only with a natural and intuitive setup for
real-world applications, but also a useful perspective for comparing DPPs with existing
models, which we turn to next.
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(a)

(b) (c)

Figure 3.1: Revisiting DPP geometry: (a) The probability of a subset Y is the square
of the volume spanned by qiφi for i ∈ Y . (b) As item i’s quality qi increases, so do the
probabilities of sets containing item i. (c) As two items i and j become more similar,
φ>
i φj increases and the probabilities of sets containing both i and j decrease.

3.2 Expressiveness

Many probabilistic models are known and widely used within the machine learning
community. A natural question, therefore, is what advantages DPPs offer that standard
models do not. We have seen already how a large variety of inference tasks, like sampling
and conditioning, can be performed efficiently for DPPs; however efficiency is essentially
a prerequisite for any practical model. What makes DPPs particularly unique is the
marriage of these computational advantages with the ability to express global, negative
interactions between modeling variables; this repulsive domain is notoriously intractable
using traditional approaches like graphical models (Murphy et al., 1999; Boros and
Hammer, 2002; Ishikawa, 2003; Taskar et al., 2004; Yanover and Weiss, 2002; Yanover
et al., 2006; Kulesza and Pereira, 2008). In this section we elaborate on the expressive
powers of DPPs and compare them with those of Markov random fields, which we take
as representative graphical models.

3.2.1 Markov random fields

A Markov random field (MRF) is an undirected graphical model defined by a graph G
whose nodes 1, 2, . . . , N represent random variables. For our purposes, we will consider
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binary MRFs, where each output variable takes a value from {0, 1}. We use yi to denote
a value of the ith output variable, bold yc to denote an assignment to a set of variables c,
and y for an assignment to all of the output variables. The graph edges E encode direct
dependence relationships between variables; for example, there might be edges between
similar elements i and j to represent the fact that they tend not to co-occur. MRFs are
often referred to as conditional random fields when they are parameterized to depend on
input data, and especially when G is a chain (Lafferty et al., 2001).

An MRF defines a joint probability distribution over the output variables that factor-
izes across the cliques C of G:

P(y) = 1

Z

∏
c∈C

ψc(yc) . (3.4)

Here each ψc is a potential function that assigns a nonnegative value to every possible
assignment yc of the clique c, and Z is the normalization constant

∑
y′
∏

c∈C ψc(y
′
c).

Note that, for a binary MRF, we can think of y as the characteristic vector for a subset Y
of Y = {1, 2, . . . , N}. Then the MRF is equivalently the distribution of a random subset
Y , where P(Y = Y ) is equivalent to P(y).

The Hammersley-Clifford theorem states that P(y) defined in Equation (3.4) is
always Markov with respect to G; that is, each variable is conditionally independent of
all other variables given its neighbors in G. The converse also holds: any distribution
that is Markov with respect toG, as long as it is strictly positive, can be decomposed over
the cliques ofG as in Equation (3.4) (Grimmett, 1973). MRFs therefore offer an intuitive
way to model problem structure. Given domain knowledge about the nature of the ways
in which outputs interact, a practitioner can construct a graph that encodes a precise
set of conditional independence relations. (Because the number of unique assignments
to a clique c is exponential in |c|, computational constraints generally limit us to small
cliques.)

For comparison with DPPs, we will focus on pairwiseMRFs, where the largest cliques
with interesting potential functions are the edges; that is, ψc(yc) = 1 for all cliques c
where |c| > 2. The pairwise distribution is

P(y) = 1

Z

N∏
i=1

ψi(yi)
∏
ij∈E

ψij(yi, yj) . (3.5)
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We refer to ψi(yi) as node potentials, and ψij(yi, yj) as edge potentials.
MRFs are very general models—in fact, if the cliques are unbounded in size, they

are fully general—but inference is only tractable in certain special cases. Cooper (1990)
showed that general probabilistic inference (conditioning and marginalization) in MRFs
is NP-hard, and this was later extended by Dagum and Luby (1993), who showed that in-
ference is NP-hard even to approximate. Shimony (1994) proved that the MAP inference
problem (finding the mode of an MRF) is also NP-hard, and Abdelbar and Hedetniemi
(1998) showed that the MAP problem is likewise hard to approximate. In contrast, we
showed in Chapter 2 that DPPs offer efficient exact probabilistic inference; furthermore,
although the MAP problem for DPPs is NP-hard, it can be approximated to a constant
factor under cardinality constraints in polynomial time.

The first tractable subclass of MRFs was identified by Pearl (1982), who showed
that belief propagation can be used to perform inference in polynomial time when G
is a tree. More recently, certain types of inference in binary MRFs with associative (or
submodular) potentials ψ have been shown to be tractable (Boros and Hammer, 2002;
Taskar et al., 2004; Kolmogorov and Zabih, 2004). Inference in non-binary associative
MRFs is NP-hard, but can be efficiently approximated to a constant factor depending on
the size of the largest clique (Taskar et al., 2004). Intuitively, an edge potential is called
associative if it encourages the endpoint nodes take the same value (e.g., to be both in or
both out of the set Y ). More formally, associative potentials are at least one whenever
the variables they depend on are all equal, and exactly one otherwise. We can rewrite the
pairwise, binary MRF of Equation (3.5) in a canonical log-linear form:

P(y) ∝ exp

(∑
i

wiyi +
∑
ij∈E

wijyiyj

)
. (3.6)

Here we have eliminated redundancies by forcing ψi(0) = 1, ψij(0, 0) = ψij(0, 1) =

ψij(1, 0) = 1, and setting wi = logψi(1), wij = logψij(1, 1). This parameterization is
sometimes called the fully visible Boltzmann machine. Under this representation, the
MRF is associative whenever wij ≥ 0 for all ij ∈ E.

We have seen that inference in MRFs is tractable when we restrict the graph to a tree
or require the potentials to encourage agreement. However, the repulsive potentials
necessary to build MRFs exhibiting diversity are the opposite of associative potentials
(since they imply wij < 0), and lead to intractable inference for general graphs. Indeed,
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such negative potentials can create “frustrated cycles”, which have been used both as
illustrations of common MRF inference algorithm failures (Kulesza and Pereira, 2008)
and as targets for improving those algorithms (Sontag and Jaakkola, 2007). A wide
array of (informally) approximate inference algorithms have been proposed to mitigate
tractability problems, but none to our knowledge effectively and reliably handles the
case where potentials exhibit strong repulsion.

3.2.2 Comparing DPPs and MRFs

Despite the computational issues outlined in the previous section, MRFs are popular
models and, importantly, intuitive for practitioners, both because they are familiar and
because their potential functions directly model simple, local relationships. We argue
that DPPs have a similarly intuitive interpretation using the decomposition in Section 3.1.
Here, we compare the distributions realizable by DPPs and MRFs to see whether the
tractability of DPPs comes at a large expressive cost.

Consider a DPP over Y = {1, 2, . . . , N} with N ×N kernel matrix L decomposed
as in Section 3.1; we have

PL(Y ) ∝ det(LY ) =

(∏
i∈Y

q2i

)
det(SY ) . (3.7)

The most closely related MRF is a pairwise, complete graph on N binary nodes with
negative interaction terms. We let yi = I(i ∈ Y ) be indicator variables for the set Y , and
write the MRF in the log-linear form of Equation (3.6):

PMRF(Y ) ∝ exp

(∑
i

wiyi +
∑
i<j

wijyiyj

)
, (3.8)

where wij ≤ 0.
Both of these models can capture negative correlations between indicator variables yi.

Both models also have N(N+1)
2

parameters: the DPP has quality scores qi and similarity
measures Sij , and the MRF has node log-potentials wi and edge log-potentials wij . The
key representational difference is that, while wij are individually constrained to be
nonpositive, the positive semidefinite constraint on the DPP kernel is global. One
consequence is that, as a side effect, the MRF can actually capture certain limited positive
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correlations; for example, a 3-node MRF with w12, w13 < 0 and w23 = 0 induces a
positive correlation between nodes two and three by virtue of their mutual disagreement
with node one. As we have seen in Chapter 2, the semidefinite constraint prevents the
DPP from forming any positive correlations.

More generally, semidefiniteness means that the DPP diversity feature vectors must
satisfy the triangle inequality, leading to

√
1− Sij +

√
1− Sjk ≥

√
1− Sik (3.9)

for all i, j, k ∈ Y since ‖φi − φj‖ ∝
√

1− Sij . The similarity measure therefore obeys a
type of transitivity, with large Sij and Sjk implying large Sik.

Equation (3.9) is not, by itself, sufficient to guarantee that L is positive semidefinite,
since S must also be realizable using unit length feature vectors. However, rather than
trying to develop further intuition algebraically, we turn to visualization. While it is
difficult to depict the feasible distributions of DPPs and MRFs in high dimensions, we
can get a feel for their differences even with a small number of elements N .

When N = 2, it is easy to show that the two models are equivalent, in the sense that
they can both represent any distribution with negative correlations:

P(y1 = 1)P(y2 = 1) ≥ P(y1 = 1, y2 = 1) . (3.10)

When N = 3, differences start to become apparent. In this setting both models have
six parameters: for the DPP they are (q1, q2, q3, S12, S13, S23), and for the MRF they are
(w1, w2, w3, w12, w13, w23). To place the two models on equal footing, we represent each
as the product of unnormalized per-item potentials ψ1, ψ2, ψ3 and a single unnormalized
ternary potential ψ123. This representation corresponds to a factor graph with three
nodes and a single, ternary factor (see Figure 3.2). The probability of a set Y is then
given by

P(Y ) ∝ ψ1(y1)ψ2(y2)ψ3(y3)ψ123(y1, y2, y3) . (3.11)

For theDPP, the node potentials areψDPP
i (yi) = q2yii , and for theMRF they areψMRF

i (yi) =

ewiyi . The ternary factors are

ψDPP
123 (y1, y2, y3) = det(SY ) , (3.12)
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y1

y2 y3
ψ3ψ2

ψ1

ψ123

Figure 3.2: A factor graph representation of a 3-item MRF or DPP.

Y y1y2y3 ψMRF
123 ψDPP

123

{} 000 1 1
{1} 100 1 1
{2} 010 1 1
{3} 001 1 1
{1,2} 110 ew12 1− S2

12

{1,3} 101 ew13 1− S2
13

{2,3} 011 ew23 1− S2
23

{1,2,3} 111 ew12+w13+w23 1 + 2S12S13S23 − S2
12 − S2

13 − S2
23

Table 3.1: Values of ternary factors for 3-item MRFs and DPPs.

ψMRF
123 (y1, y2, y3) = exp

(∑
i<j

wijyiyj

)
. (3.13)

Since both models allow setting the node potentials arbitrarily, we focus now on the
ternary factor. Table 3.1 shows the values of ψDPP

123 and ψMRF
123 for all subsets Y ⊆ Y . The

last four entries are determined, respectively, by the three edge parameters of the MRF
and three similarity parameters Sij of the DPP, so the sets of realizable ternary factors
form 3-D manifolds in 4-D space. We attempt to visualize these manifolds by showing
2-D slices in 3-D space for various values of ψ123(1, 1, 1) (the last row of Table 3.1).

Figure 3.3a depicts four such slices of the realizable DPP distributions, and Figure 3.3b
shows the same slices of the realizable MRF distributions. Points closer to the origin (on
the lower left) correspond to “more repulsive” distributions, where the three elements of
Y are less likely to appear together. When ψ123(1, 1, 1) is large (gray surfaces), negative
correlations are weak and the two models give rise to qualitatively similar distributions.
As the value of the ψ123(1, 1, 1) shrinks to zero (red surfaces), the two models become
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quite different. MRFs, for example, can describe distributions where the first item
is strongly anti-correlated with both of the others, but the second and third are not
anti-correlated with each other. The transitive nature of the DPP makes this impossible.

To improve visibility, we have constrained S12, S13, S23 ≥ 0 in Figure 3.3a. Figure 3.3c
shows a single slice without this constraint; allowing negative similarity makes it possible
to achieve strong three-way repulsion with less pairwise repulsion, closing the surface
away from the origin. The corresponding MRF slice is shown in Figure 3.3d, and the
two are overlaid in Figure 3.3e and Figure 3.3f. Even though there are relatively strong
interactions in these plots (ψ123(1, 1, 1) = 0.1), the models remain roughly comparable
in terms of the distributions they can express.

As N gets larger, we conjecture that the story is essentially the same. DPPs are
primarily constrained by a notion of transitivity on the similarity measure; thus it would
be difficult to use a DPP to model, for example, data where items repel “distant” items
rather than similar items—if i is far from j and j is far from k we cannot necessarily
conclude that i is far from k. One way of looking at this is that repulsion of distant items
induces positive correlations between the selected items, which a DPP cannot represent.

MRFs, on the other hand, are constrained by their local nature and do not effectively
model data that are “globally” diverse. For instance, a pairwise MRF we cannot exclude
a set of three or more items without excluding some pair of those items. More generally,
an MRF assumes that repulsion does not depend on (too much) context, so it cannot
express that, say, there can be only a certain number of selected items overall. The DPP
can naturally implement this kind of restriction though the rank of the kernel.

3.3 Dual representation

The standard inference algorithms for DPPs rely on manipulating the kernel L through
inversion, eigendecomposition, and so on. However, in situations where N is large we
may not be able to work efficiently with L—in some cases we may not even have the
memory to write it down. In this section, instead, we develop a dual representation of a
DPP that shares many important properties with the kernel L but is often much smaller.
Afterwards, we will show how this dual representation can be applied to perform efficient
inference.

Let B be theD×N matrix whose columns are given by Bi = qiφi, so that L = B>B.
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Figure 3.3: (a,b) Realizable values of ψ123(1, 1, 0), ψ123(1, 0, 1), and ψ123(0, 1, 1) in a
3-factor when ψ123(1, 1, 1) = 0.001 (red), 0.25 (green), 0.5 (blue), and 0.75 (grey). (c,d)
Surfaces for ψ123(1, 1, 1) = 0.1, allowing negative similarity for the DPP. (e,f) DPP (blue)
and MRF (red) surfaces superimposed.



Chapter 3. Representation and algorithms 55

Consider now the matrix
C = BB> . (3.14)

By construction, C is symmetric and positive semidefinite. In contrast to L, which is too
expensive to work with when N is large, C is only D ×D, where D is the dimension of
the diversity feature function φ. In many practical situations, D is fixed by the model
designer, whileN may grow without bound as new items become available; for instance,
a search engine may continually add to its database of links. Furthermore, we have the
following result.

Proposition 3.1. The nonzero eigenvalues of C and L are identical, and the corresponding
eigenvectors are related by the matrix B. That is,

C =
D∑

n=1

λnv̂nv̂
>
n (3.15)

is an eigendecomposition of C if and only if

L =
D∑

n=1

λn

(
1√
λn
B>v̂n

)(
1√
λn
B>v̂n

)>

(3.16)

is an eigendecomposition of L.

Proof. In the forward direction, we assume that {(λn, v̂n)}Dn=1 is an eigendecomposition
of C. We have

D∑
n=1

λn

(
1√
λn
B>v̂n

)(
1√
λn
B>v̂n

)>

= B>

(
D∑

n=1

v̂nv̂
>
n

)
B (3.17)

= B>B = L , (3.18)

since v̂n are orthonormal by assumption. Furthermore, for any n we have∥∥∥∥ 1√
λn
B>v̂n

∥∥∥∥2 = 1

λn
(B>v̂n)

>(B>v̂n) (3.19)

=
1

λn
v̂>
nCv̂n (3.20)

=
1

λn
λn‖v̂n‖ (3.21)
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= 1 , (3.22)

using the fact that Cv̂n = λnv̂n since v̂n is an eigenvector of C. Finally, for any distinct
1 ≤ a, b ≤ D, we have(

1√
λa
B>v̂a

)>(
1√
λb
B>v̂b

)
=

1√
λaλb

v̂>
a Cv̂b (3.23)

=

√
λb√
λa

v̂>
a v̂b (3.24)

= 0 . (3.25)

Thus
{(
λn,

1√
λn
B>v̂n

)}D

n=1
is an eigendecomposition of L. In the other direction, an

analogous argument applies once we observe that, since L = B>B, L has rank at most
D and therefore at most D nonzero eigenvalues.

Proposition 3.1 shows that C contains quite a bit of information about L. In fact, C is
sufficient to perform nearly all forms of DPP inference efficiently, including normal-
ization and marginalization in constant time with respect to N , and sampling in time
linear in N .

3.3.1 Normalization

Recall that the normalization constant for a DPP is given by det(L+ I). If λ1, λ2, . . . , λN
are the eigenvalues of L, then the normalization constant is equal to

∏N
n=1(λn+1), since

the determinant is the product of the eigenvalues of its argument. By Proposition 3.1,
the nonzero eigenvalues of L are also the eigenvalues of the dual representation C. Thus,
we have

det(L+ I) =
D∏

n=1

(λn + 1) = det(C + I) . (3.26)

Computing the determinant of C + I requires O(Dω) time.

3.3.2 Marginalization

Standard DPP marginalization makes use of the marginal kernelK, which is of course as
large as L. However, the dual representation C can be used to compute the entries of K.
We first eigendecompose the dual representation as C =

∑D
n=1 λnv̂nv̂

>
n , which requires
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O(Dω) time. Then, we can use the definition of K in terms of the eigendecomposition
of L as well as Proposition 3.1 to compute

Kii =
D∑

n=1

λn
λn + 1

(
1√
λn
B>

i v̂n

)2

(3.27)

= q2i

D∑
n=1

1

λn + 1
(φ>

i v̂n)
2 . (3.28)

That is, the diagonal entries of K are computable from the dot products between the
diversity features φi and the eigenvectors of C; we can therefore compute the marginal
probability of a single item i ∈ Y from an eigendecomposition of C in O(D2) time.
Similarly, given two items i and j we have

Kij =
D∑

n=1

λn
λn + 1

(
1√
λn
B>

i v̂n

)(
1√
λn
B>

j v̂n

)
(3.29)

= qiqj

D∑
n=1

1

λn + 1
(φ>

i v̂n)(φ
>
j v̂n) , (3.30)

so we can compute arbitrary entries of K in O(D2) time. This allows us to compute,
for example, pairwise marginals P(i, j ∈ Y ) = KiiKjj −K2

ij . More generally, for a set
A ∈ Y , |A| = k, we need to compute k(k+1)

2
entries of K to obtain KA, and taking the

determinant then yields P(A ⊆ Y ). The process requires only O(D2k2 + kω) time; for
small sets |A| this is just quadratic in the dimension of φ.

3.3.3 Sampling

Recall the DPP sampling algorithm, which is reproduced for convenience in Algorithm 2.
We will show that this algorithm can be implemented in a tractable manner by using the
dual representation C. The main idea is to represent V , the orthonormal set of vectors
in RN , as a set V̂ of vectors in RD, with the mapping

V =
{
B>v̂ | v̂ ∈ V̂

}
. (3.31)

Note that, when V̂ contains eigenvectors of C, this is (up to scale) the relationship
established by Proposition 3.1 between eigenvectors v̂ of C and eigenvectors v of L.
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Algorithm 2 Sampling from a DPP
Input: eigendecomposition {(vn, λn)}Nn=1 of L
J ← ∅
for n = 1, 2, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1

end for
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select i from Y with Pr(i) = 1
|V |
∑

v∈V (v
>ei)

2

Y ← Y ∪ i
V ← V⊥, an orthonormal basis for the subspace of V orthogonal to ei

end while
Output: Y

Themapping in Equation (3.31) has several useful properties. If v1 = B>v̂1 and v2 =

B>v̂2, then v1 + v2 = B>(v̂1 + v̂2), and likewise for any arbitrary linear combination.
In other words, we can perform implicit scaling and addition of the vectors in V using
only their preimages in V̂ . Additionally, we have

v>
1 v2 = (B>v̂1)

>(B>v̂2) (3.32)

= v̂>
1 Cv̂2 , (3.33)

so we can compute dot products of vectors in V in O(D2) time. This means that, for
instance, we can implicitly normalize v = B>v̂ by updating v̂ ← v̂√

v̂>Cv̂
.

We now show how these operations allow us to efficiently implement key parts of
the sampling algorithm. Because the nonzero eigenvalues of L and C are equal, the first
loop of the algorithm, where we choose in index set J , remains unchanged. Rather than
using J to construct orthonormal V directly, however, we instead build the set V̂ by
adding v̂n√

v̂>
nCv̂n

for every n ∈ J .

In the last phase of the loop, we need to find an orthonormal basis V⊥ for the subspace
of V orthogonal to a given ei. This requires two steps. In the first, we subtract a multiple
of one of the vectors in V from all of the other vectors so that they are zero in the ith
component, leaving us with a set of vectors spanning the subspace of V orthogonal
to ei. In order to do this we must be able to compute the ith component of a vector
v ∈ V ; since v = B>v̂, this is easily done by computing the ith column of B, and
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then taking the dot product with v̂. This takes only O(D) time. In the second step, we
use the Gram-Schmidt process to convert the resulting vectors into an orthonormal set.
This requires a series of dot products, sums, and scalings of vectors in V ; however, as
previously argued all of these operations can be performed implicitly. Therefore the
mapping in Equation (3.31) allows us to implement the final line of the second loop
using only tractable computations on vectors in V̂ .

All that remains, then, is to efficiently choose an item i according to the distribution

Pr(i) = 1

|V |
∑
v∈V

(v>ei)
2 (3.34)

=
1

|V̂ |

∑
v̂∈V̂

((B>v̂)>ei)
2 (3.35)

in the first line of the while loop. Simplifying, we have

Pr(i) = 1

|V̂ |

∑
v̂∈V̂

(v̂>Bi)
2 . (3.36)

Thus the required distribution can be computed in time O(NDk), where k = |V̂ |.
The complete dual sampling algorithm is given in Algorithm 3; the overall runtime is
O(NDk2 +D2k3).

3.4 Random projections

As we have seen, dual DPPs allow us to deal with settings where N is too large to work
efficiently with L by shifting the computational focus to the dual kernel C, which is
only D ×D. This is an effective approach when D � N . Of course, in some cases D
might also be unmanageably large, for instance when the diversity features are given by
word counts in natural language settings, or high-resolution image features in vision.

To address this problem, we describe a method for reducing the dimension of the
diversity features while maintaining a close approximation to the original DPP model.
Our approach is based on applying random projections, an extremely simple technique
that nonetheless provides an array of theoretical guarantees, particularly with respect to
preserving distances between points (Vempala, 2004). A classic result of Johnson and
Lindenstrauss (1984), for instance, shows that high-dimensional points can be randomly
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Algorithm 3 Sampling from a DPP (dual representation)
Input: eigendecomposition {(v̂n, λn)}Dn=1 of C
J ← ∅
for n = 1, 2, . . . , D do
J ← J ∪ {n} with prob. λn

λn+1

end for
V̂ ←

{
v̂n√

v̂>
nCv̂n

}
n∈J

Y ← ∅
while |V̂ | > 0 do

Select i from Y with Pr(i) = 1

|V̂ |

∑
v̂∈V̂ (v̂

>Bi)
2

Y ← Y ∪ i
Let v̂0 be a vector in V̂ with B>

i v̂0 6= 0

Update V̂ ←
{
v̂ − v̂>Bi

v̂>
0 Bi

v̂0 | v̂ ∈ V̂ − {v̂0}
}

Orthonormalize V̂ with respect to the dot product 〈v̂1, v̂2〉 = v̂>
1 Cv̂2

end while
Output: Y

projected onto a logarithmic number of dimensions while approximately preserving the
distances between them. More recently, Magen and Zouzias (2008) extended this idea to
the preservation of volumes spanned by sets of points. Here, we apply the connection
between DPPs and spanned volumes to show that random projections allow us to
reduce the dimensionality of φ, dramatically speeding up inference, while maintaining a
provably close approximation to the original, high-dimensional model. We begin by
stating a variant of Magen and Zouzias’ result.

Lemma 3.1. (Adapted from Magen and Zouzias (2008)) Let X be a D × N matrix. Fix
k < N and 0 < ε, δ < 1/2, and set the projection dimension

d = max
{
2k

ε
,
24

ε2

(
log(3/δ)
logN

+ 1

)
(logN + 1) + k − 1

}
. (3.37)

Let G be a d ×D random projection matrix whose entries are independently sampled from
N (0, 1

d
), and letXY , where Y ⊆ {1, 2, . . . , N}, denote theD× |Y | matrix formed by taking

the columns of X corresponding to indices in Y . Then with probability at least 1− δ we have,
for all Y with cardinality at most k:

(1− ε)|Y | ≤ Vol(GXY )

Vol(XY )
≤ (1 + ε)|Y | , (3.38)
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where Vol(XY ) is the k-dimensional volume of the parallelepiped spanned by the columns of
XY .

Lemma 3.1 says that, with high probability, randomly projecting to

d = O(max{k/ε, (log(1/δ) + logN)/ε2}) (3.39)

dimensions is sufficient to approximately preserve all volumes spanned by k columns of
X . We can use this result to bound the effectiveness of random projections for DPPs.

In order to obtain a result that is independent of D, we will restrict ourselves to the
portion of the distribution pertaining to subsets Y with cardinality at most a constant k.
This restriction is intuitively reasonable for any application where we use DPPs to model
sets of relatively small size compared to N , which is common in practice. However,
formally it may seem a bit strange, since it implies conditioning the DPP on cardinality.
In Chapter 5 we will show that this kind of conditioning is actually very practical and
efficient, and Theorem 3.1, which we prove shortly, will apply directly to the k-DPPs of
Chapter 5 without any additional work.

For now, we will seek to approximate the distribution P≤k(Y ) = P(Y = Y | |Y | ≤
k), which is simply the original DPP conditioned on the cardinality of the modeled
subset:

P≤k(Y ) =

(∏
i∈Y q

2
i

)
det(φ(Y )>φ(Y ))∑

|Y ′|≤k

(∏
i∈Y q

2
i

)
det(φ(Y )>φ(Y ))

, (3.40)

where φ(Y ) denotes the D × |Y |matrix formed from columns φi for i ∈ Y . Our main
result follows.

Theorem 3.1. LetP≤k(Y ) be the cardinality-conditioned DPP distribution defined by quality
model q and D-dimensional diversity feature function φ, and let

P̃≤k(Y ) ∝

(∏
i∈Y

q2i

)
det([Gφ(Y )]>[Gφ(Y )]) (3.41)

be the cardinality-conditioned DPP distribution obtained by projecting φ with G. Then for
projection dimension d as in Equation (3.37), we have

‖P≤k − P̃≤k‖1 ≤ e6kε − 1 (3.42)

with probability at least 1− δ. Note that e6kε − 1 ≈ 6kε when kε is small.
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The theorem says that for d logarithmic in N and linear in k, the L1 variational distance
between the original DPP and the randomly projected version is bounded. In order
to use Lemma 3.1, which bounds volumes of parallelepipeds, to prove this bound on
determinants, we will make use of the following relationship:

Vol(XY ) =
√

det(X>
Y XY ) . (3.43)

In order to handle the conditional DPP normalization constant

∑
|Y |≤k

(∏
i∈Y

q2i

)
det(φ(Y )>φ(Y )) , (3.44)

we also must adapt Lemma 3.1 to sums of determinants. Finally, for technical reasons we
will change the symmetry of the upper and lower bounds from the sign of ε to the sign
of the exponent. The following lemma gives the details.

Lemma 3.2. Under the definitions and assumptions of Lemma 3.1, we have, with probability
at least 1− δ,

(1 + 2ε)−2k ≤
∑

|Y |≤k det((GXY )
>(GXY ))∑

|Y |≤k det(X>
Y XY )

≤ (1 + ε)2k . (3.45)

Proof. ∑
|Y |≤k

det((GXY )
>(GXY )) =

∑
|Y |≤k

Vol2(GXY ) (3.46)

≥
∑
|Y |≤k

(
Vol(XY )(1− ε)|Y |)2 (3.47)

≥ (1− ε)2k
∑
|Y |≤k

Vol2(XY ) (3.48)

≥ (1 + 2ε)−2k
∑
|Y |≤k

det(X>
Y XY ) , (3.49)

where the first inequality holds with probability at least 1−δ by Lemma 3.1, and the third
follows from the fact that (1−ε)(1+2ε) ≥ 1 (since ε < 1/2), thus (1−ε)2k ≥ (1+2ε)−2k.
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The upper bound follows directly:∑
|Y |≤k

(Vol(GXY ))
2 ≤

∑
|Y |≤k

(
Vol(XY )(1 + ε)|Y |)2 (3.50)

≤ (1 + ε)2k
∑
|Y |≤k

det(X>
Y XY ) . (3.51)

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Recall the matrix B, whose columns are given by Bi = qiφi. We
have

‖P≤k − P̃≤k‖1 =
∑
|Y |≤k

|P≤k(Y )− P̃≤k(Y )| (3.52)

=
∑
|Y |≤k

P≤k(Y )

∣∣∣∣∣1− P̃≤k(Y )

P≤k(Y )

∣∣∣∣∣ (3.53)

=
∑
|Y |≤k

P≤k(Y )

∣∣∣∣∣1− det([GB>
Y ][GBY ])

det(B>
Y BY )

∑
|Y ′|≤k det(B>

Y ′BY ′)∑
|Y ′|≤k det([GB>

Y ′ ][GBY ′ ])

∣∣∣∣∣
≤
∣∣1− (1 + ε)2k(1 + 2ε)2k

∣∣ ∑
|Y |≤k

P≤k(Y ) (3.54)

≤ e6kε − 1 , (3.55)

where the first inequality follows from Lemma 3.1 and Lemma 3.2, which hold simulta-
neously with probability at least 1− δ, and the second follows from (1 + a)b ≤ eab for
a, b ≥ 0.

By combining the dual representation with random projections, we can deal simulta-
neously with very largeN and very largeD. In fact, in Chapter 6 we will show thatN can
even be exponentially large if certain structural assumptions are met. These techniques
vastly expand the range of problems to which DPPs can be practically applied.
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3.5 Alternative likelihood formulas

Recall that, in an L-ensemble DPP, the likelihood of a particular set Y ⊆ Y is given by

PL(Y ) =
det(LY )

det(L+ I)
. (3.56)

This expression has some nice intuitive properties in terms of volumes, and, ignoring the
normalization in the denominator, takes a simple and concise form. However, as a ratio
of determinants on matrices of differing dimension, it may not always be analytically
convenient. Minors can be difficult to reason about directly, and ratios complicate
calculations like derivatives. Moreover, we might want the likelihood in terms of the
marginal kernelK = L(L+I)−1 = I−(L+I)−1, but simply plugging in these identities
yields a expression that is somewhat unwieldy.

As alternatives, we will derive some additional formulas that, depending on context,
may have useful advantages. Our starting point will be the observation, used previously
in the proof of Theorem 2.2, that minors can be written in terms of full matrices and
diagonal indicator matrices; specifically, for positive semidefinite L,

det(LY ) = det(IYL+ IȲ ) (3.57)

= (−1)|Ȳ | det(IYL− IȲ ) (3.58)

= |det(IYL− IȲ )| , (3.59)

where IY is the diagonal matrix with ones in the diagonal positions corresponding to
elements of Y and zeros everywhere else, and Ȳ = Y − Y . These identities can be easily
shown by examining the matrices blockwise under the partition Y = Y ∪ Ȳ , as in the
proof of Theorem 2.2.

Applying Equation (3.57) to Equation (3.56), we get

PL(Y ) =
det(IYL+ IȲ )

det(L+ I)
(3.60)

= det((IYL+ IȲ )(L+ I)−1) (3.61)

= det(IYL(L+ I)−1 + IȲ (L+ I)−1) . (3.62)

Already, this expression, which is a single determinant of an N ×N matrix, is in some
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ways easier to work with. We can also more easily write the likelihood in terms of K:

PL(Y ) = det(IYK + IȲ (I −K)) . (3.63)

Recall from Equation (2.27) that I −K is the marginal kernel of the complement DPP;
thus, in an informal sense we can read Equation (3.63) as combining the marginal
probability that Y is selected with the marginal probability that Ȳ is not selected.

We can also make a similar derivation using Equation (3.58):

PL(Y ) = (−1)|Ȳ |det(IYL− IȲ )
det(L+ I)

(3.64)

= (−1)|Ȳ | det((IYL− IȲ )(L+ I)−1) (3.65)

= (−1)|Ȳ | det(IYL(L+ I)−1 − IȲ (L+ I)−1) (3.66)

= (−1)|Ȳ | det(IYK − IȲ (I −K)) (3.67)

= (−1)|Ȳ | det(K − IȲ ) (3.68)

= |det(K − IȲ )| . (3.69)

Note that Equation (3.63) involves asymmetric matrix products, but Equation (3.69)
does not; on the other hand, K − IȲ is (in general) indefinite.



4
Learning

We have seen that determinantal point process offer appealing modeling intuitions
and practical algorithms, capturing geometric notions of diversity and permitting com-
putationally efficient inference in a variety of settings. However, to accurately model
real-world data we must first somehow determine appropriate values of the model pa-
rameters. Conceivably, an expert on a particular topic could do this by designing a kernel
L that best reflects his or her underlying understanding of the domain. By applying
the techniques in Chapters 2 and 3, the resulting model could then be used in various
applications.

However, this is not always a practical approach. For example, consider ant colonies
built by Veromessor pergandei and Pogonomyrmex californicus, two species whose colonies
are known to exhibit what is called “overdispersion”; that is, the distances between
colonies are significantly larger thanwould be expected if they were placed independently
at random (Ryti and Case, 1986). (These colonies are spaced on the order of tens of meters
apart.) Researchers familiar with the patterns might consider using DPPs to model the
colony locations; however, because the data are noisy and finite, rather than precise and

66
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formally specified, they would need to carefully fit the model by hand, tweaking the
kernel entries until the model matched their intuition. They would need to consider
both the tendency of colonies to repel each other (and the causes of that repulsion) as
well as the general preferences for colony location (e.g., a colony probably cannot be
built into stone). Unlike, say, a Gaussian distribution, which has only a few parameters
that are easily measured from the data, a DPP over N potential colony locations has,
without further modeling assumptions, N(N+1)

2
parameters to set, and as more and more

observations of real-world ant colonies are obtained, the task of distilling the data into a
single model becomes more and more intractable.

The problem of data volume is magnified even more when the domain is digital; for
example, suppose we want to use DPPs to model the diversity of intentions that users
have when they search for the query “matrix”—they might be looking for linear algebra
fundamentals, the Keanu Reeves film from 1999 (or its sequels), the Toyota hatchback,
the flight pricing engine, or even hair products. If we have access to the logs of a major
search engine, we may see many thousands of data points every day. There is little hope
of developing human expert knowledge on this problem efficiently enough to make it
worth the effort, particularly when the same task needs to be accomplished for a large
set of ambiguous queries.

For all of these reasons, techniques for automatically learning DPPs from data are
important practical tools. In this section we will show howDPP learning can be achieved
efficiently, as well as some cases where it probably cannot. We begin by discussing how
to parameterize DPPs conditioned on input data. We then define what we mean by
learning, and, using the quality vs. diversity decomposition introduced in Section 3.1,
we show how a parameterized quality model can be learned efficiently from a training
set. Finally, we discuss the difficulties inherent in learning the diversity model, and
conjecture that it may be NP-hard in general.

4.1 Conditional DPPs

Suppose we want to use a DPP to model the seats in an auditorium chosen by students
attending a class. (Perhaps we think students tend to spread out.) In this context each
meeting of the class is a new sample from the empirical distribution over subsets of the
(fixed) seats, so we merely need to collect enough samples and we should be able to fit
our model, as desired.
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For many problems, however, the notion of a single fixed base set Y is inadequate.
For instance, consider extractive document summarization, where the goal is to choose a
subset of the sentences in a news article that together form a good summary of the entire
article. In this setting Y is the set of sentences in the news article being summarized,
thus Y is not fixed in advance but instead depends on context. One way to deal with
this problem is to model the summary for each article as its own DPP with a separate
kernel matrix. This approach certainly affords great flexibility, but if we have only a
single sample summary for each article, there is little hope of getting good parameter
estimates. Even more importantly, we have learned nothing that can be applied to
generate summaries of unseen articles at test time, which was presumably our goal in
the first place.

Alternatively, we could let Y be the set of all sentences appearing in any news arti-
cle; this allows us to learn a single model for all of our data, but comes with obvious
computational issues and does not address the other concerns, since sentences are rarely
repeated.

To solve this problem, we need a DPP that depends parametrically on the input data;
this will enable us to share information across training examples in a justifiable and
effective way. We first introduce some notation. Let X be the input space; for example,
X might be the space of news articles. Let Y(X) denote the ground set of items implied
by an inputX ∈ X , e.g., the set of all sentences in news articleX . We have the following
definition.

Definition 4.1. A conditional DPP P(Y = Y |X) is a conditional probabilistic model
which assigns a probability to every possible subset Y ⊆ Y(X). The model takes the form of an
L-ensemble:

P(Y = Y |X) ∝ det(LY (X)) , (4.1)

where L(X) is a positive semidefinite |Y(X)| × |Y(X)| kernel matrix that depends on the
input.

As discussed in Chapter 2, the normalization constant for a conditional DPP can
be computed efficiently and is given by det(L(X) + I). Using the quality/diversity
decomposition introduced in Section 3.1, we have

Lij(X) = qi(X)φi(X)>φj(X)qj(X) (4.2)
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for suitable qi(X) ∈ R+ and φi(X) ∈ RD, ‖φi(X)‖ = 1, which now depend on X .
In the following sections we will discuss application-specific parameterizations of

the quality and diversity models q and φ in terms of the input. First, however, we review
our learning setup.

4.1.1 Supervised learning

The basic supervised learning problem is as follows. We receive a training data sample
{(X(t), Y (t))}Tt=1 drawn independently and identically from a distribution D over pairs
(X,Y ) ∈ X × 2Y(X), where X is an input space and Y(X) is the associated ground set
for input X . We assume the conditional DPP kernel L(X; θ) is parameterized in terms
of a generic θ, and let

Pθ(Y |X) =
det(LY (X; θ))

det(L(X; θ) + I)
(4.3)

denote the conditional probability of an output Y given input X under parameter θ.
The goal of learning is to choose appropriate θ based on the training sample so that we
can make accurate predictions on unseen inputs.

While there are a variety of objective functions commonly used for learning, here
we will focus on maximum likelihood learning (or maximum likelihood estimation,
often abbreviated MLE), where the goal is to choose θ to maximize the conditional
log-likelihood of the observed data:

L(θ) = log
T∏
t=1

Pθ(Y
(t)|X(t)) (4.4)

=
T∑
t=1

logPθ(Y
(t)|X(t)) (4.5)

=
T∑
t=1

[
log det(LY (t)(X(t); θ))− log det(L(X(t); θ) + I)

]
. (4.6)

Optimizing L is consistent under mild assumptions; that is, if the training data are
actually drawn from a conditional DPP with parameter θ∗, then the learned θ → θ∗ as
T →∞. Of course real data are unlikely to exactly follow any particular model, but in
any case the maximum likelihood approach has the advantage of calibrating the DPP to
produce reasonable probability estimates, since maximizing L can be seen as minimizing
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the log-loss on the training data.
To optimize the log-likelihood, we will use standard algorithms such as gradient

ascent or L-BFGS (Nocedal, 1980). These algorithms depend on the gradient ∇L(θ),
which must exist and be computable, and they converge to the optimum whenever
L(θ) is concave in θ. Thus, our ability to optimize likelihood efficiently will depend
fundamentally on these two properties.

4.2 Learning quality

We begin by showing how to learn a parameterized quality model qi(X; θ) when the
diversity feature function φi(X) is held fixed. This setup is somewhat analogous to
support vector machines (Vapnik, 2000), where a kernel is fixed by the practitioner and
then the per-example weights are automatically learned. Here, φi(X) can consist of any
desired measurements (and could even be infinite-dimensional, as long as the resulting
similarity matrix S is a proper kernel). We propose computing the quality scores using a
log-linear model:

qi(X; θ) = exp
(
1

2
θ>f i(X)

)
, (4.7)

where f i(X) ∈ Rm is a feature vector for item i and the parameter θ is now concretely
an element of Rm. Note that feature vectors f i(X) are in general distinct from φi(X);
the former are used for modeling quality, and will be “interpreted” by the parameters θ,
while the latter define the diversity model S, which is fixed in advance. We have

Pθ(Y |X) =

∏
i∈Y
[
exp

(
θ>f i(X)

)]
det(SY (X))∑

Y ′⊆Y(X)

∏
i∈Y ′ [exp (θ>f i(X))] det(SY ′(X))

. (4.8)

For ease of notation, going forward we will assume that the training set contains only
a single instance (X,Y ), and drop the instance index t. All of the following results extend
easily to multiple training examples. First, we show that under this parameterization
the log-likelihood function is concave in θ; then we will show that its gradient can
be computed efficiently. With these results in hand we will be able to apply standard
optimization techniques.

Proposition 4.1. L(θ) is concave in θ.
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Proof. We have

L(θ) = logPθ(Y |X) (4.9)

= θ>
∑
i∈Y

f i(X) + log det(SY (X))

− log
∑

Y ′⊆Y(X)

exp

(
θ>
∑
i∈Y ′

f i(X)

)
det(SY ′(X)) . (4.10)

With respect to θ, the first term is linear, the second is constant, and the third is the
composition of a concave function (negative log-sum-exp) and a linear function, so the
overall expression is concave.

We now derive the gradient ∇L(θ), using Equation (4.10) as a starting point.

∇L(θ) =
∑
i∈Y

f i(X)−∇

log ∑
Y ′⊆Y(X)

exp

(
θ>
∑
i∈Y ′

f i(X)

)
det(SY ′(X))

 (4.11)

=
∑
i∈Y

f i(X)−
∑

Y ′⊆Y(X)

exp
(
θ>
∑

i∈Y ′ f i(X)
)
det(SY ′(X))

∑
i∈Y ′ f i(X)∑

Y ′ exp
(
θ>
∑

i∈Y ′ f i(X)
)
det(SY ′(X))

(4.12)

=
∑
i∈Y

f i(X)−
∑

Y ′⊆Y(X)

Pθ(Y
′|X)

∑
i∈Y ′

f i(X) . (4.13)

Thus, as in standard maximum entropy modeling, the gradient of the log-likelihood
can be seen as the difference between the empirical feature counts and the expected
feature counts under the model distribution. The difference here, of course, is that Pθ

is a DPP, which assigns higher probability to diverse sets. Compared with a standard
independent model obtained by removing the diversity term from Pθ, Equation (4.13)
actually emphasizes those training examples that are not diverse, since these are the
examples on which the quality model must focus its attention in order to overcome the
bias imposed by the determinant. In the experiments that follow we will see that this
distinction is important in practice.

The sum over Y ′ in Equation (4.13) is exponential in |Y(X)|; hence we cannot
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Algorithm 4 Gradient of the log-likelihood
Input: instance (X,Y ), parameters θ
Compute L(X; θ) as in Equation (4.2)
Eigendecompose L(X; θ) =

∑N
n=1 λnvnv

>
n

for i ∈ Y(X) do
Kii ←

∑N
n=1

λn

λn+1
v2
ni

end for
∇L(θ)←

∑
i∈Y f i(X)−

∑
iKiif i(X)

Output: gradient ∇L(θ)

compute it directly. Instead, we can rewrite it by switching the order of summation:∑
Y ′⊆Y(X)

Pθ(Y
′|X)

∑
i∈Y ′

f i(X) =
∑
i

f i(X)
∑

Y ′⊇{i}

Pθ(Y
′|X) . (4.14)

Note that
∑

Y ′⊇{i}Pθ(Y
′|X) is the marginal probability of item i appearing in a set

sampled from the conditional DPP. That is, the expected feature counts are computable
directly from the marginal probabilities. Recall that we can efficiently marginalize
DPPs; in particular, per-itemmarginal probabilities are given by the diagonal ofK(X; θ),
the marginal kernel (which now depends on the input and the parameters). We can
computeK(X; θ) from the kernelL(X; θ) usingmatrix inversion or eigendecomposition.
Algorithm 4 shows howwe can use these ideas to compute the gradient ofL(θ) efficiently.

In fact, note that we do not need all ofK(X; θ), but only its diagonal. In Algorithm 4
we exploit this in the main loop, using only N2 multiplications rather than the N3

we would need to construct the entire marginal kernel. Unfortunately, the savings is
asymptotically irrelevant since we still need to eigendecompose L(X; θ). It is conceivable
that a faster algorithm exists for computing the diagonal of K(X; θ) directly, along the
lines of ideas recently proposed by Tang and Saad (2011) (which focus on sparse matrices);
however, we are not currently aware of a useful improvement over Algorithm 4.

4.2.1 Experiments: document summarization

We demonstrate learning for the conditional DPP quality model on an extractive multi-
document summarization task using news text. The basic goal is to generate a short
piece of text that summarizes the most important information from a news story. In the
extractive setting, the summary is constructed by stringing together sentences found in a
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cluster of relevant news articles. This selection problem is a balancing act: on the one
hand, each selected sentence should be relevant, sharing significant information with
the cluster as a whole; on the other, the selected sentences should be diverse as a group
so that the summary is not repetitive and is as informative as possible given its length
(Dang, 2005; Nenkova et al., 2006). DPPs are a natural fit for this task, viewed through
the decomposition of Section 3.1.

As in Section 4.1, the input X will be a cluster of documents, and Y(X) a set of
candidate sentences from those documents. In our experiments Y(X) contains all
sentences from all articles in the cluster, although in general preprocessing could also
be used to try to improve the candidate set (Conroy et al., 2004). We will learn a DPP
to model good summaries Y for a given input X . Because DPPs model unordered sets
while summaries are linear text, we construct a written summary from Y by placing the
sentences it contains in the same order in which they appeared in the original documents.
This policy is unlikely to give optimal results, but it is consistent with prior work (Lin
and Bilmes, 2010) and seems to perform well. Furthermore, it is at least partially justified
by the fact that modern automatic summary evaluation metrics like ROUGE, which we
describe later, are mostly invariant to sentence order.

We experiment with data from the multi-document summarization task (Task 2) of
the 2003 and 2004 Document Understanding Conference (DUC) (Dang, 2005). The
article clusters used for these tasks are taken from the NIST TDT collection. Each cluster
contains approximately 10 articles drawn from the AP and New York Times newswires,
and covers a single topic over a short time span. The clusters have a mean length of
approximately 250 sentences and 5800 words. The 2003 task, which we use for training,
contains 30 clusters, and the 2004 task, which is our test set, contains 50 clusters. Each
cluster comes with four reference human summaries (which are not necessarily formed
by sentences from the original articles) for evaluation purposes. Summaries are required
to be at most 665 characters in length, including spaces. Figure 4.1 depicts a sample
cluster from the test set.

To measure performance on this task we follow the original evaluation and use
ROUGE, an automatic evaluation metric for summarization (Lin, 2004). ROUGE mea-
sures n-gram overlap statistics between the human references and the summary being
scored, and combines them to produce various sub-metrics. ROUGE-1, for example, is a
simple unigram recall measure that has been shown to correlate quite well with human
judgments (Lin, 2004). Here, we use ROUGE’s unigram F-measure (which combines
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NASA and the Russian Space Agency have agreed to set 
aside a last-minute Russian request to launch an 
international space station into an orbit closer to Mir, 
officials announced Friday. . . .

A last-minute alarm forced NASA to halt Thursday's 
launching of the space shuttle Endeavour, on a mission to 
start assembling the international space station. This was 
the first time in three years . . .

The planet's most daring construction job began Friday as 
the shuttle Endeavour carried into orbit six astronauts and 
the first U.S.-built part of an international space station 
that is expected to cost more than $100 billion. . . .

Following a series of intricate maneuvers and the skillful 
use of the space shuttle Endeavour's robot arm, 
astronauts on Sunday joined the first two of many 
segments that will form the space station . . .

document cluster

human summary

extractive summary

On Friday the shuttle Endeavor carried six astronauts into orbit to start 
building an international space station.  The launch occurred after Russia 
and U.S. officials agreed not to delay the flight in order to orbit closer to 
MIR, and after a last-minute alarm forced a postponement.  On Sunday 
astronauts joining the Russian-made Zarya control module cylinder with 
the American-made module to form a 70,000 pounds mass 77 feet 
long. . . .

...

• NASA and the Russian Space Agency have agreed to set aside . . .

• A last-minute alarm forced NASA to halt Thursday's launching . . .

• This was the first time in three years, and 19 flights . . .

• After a last-minute alarm, the launch went off flawlessly Friday . . . 

• Following a series of intricate maneuvers and the skillful . . .

• It looked to be a perfect and, hopefully, long-lasting fit. . . .

Figure 4.1: A sample cluster from the DUC 2004 test set, with one of the four human
reference summaries and an (artificial) extractive summary.

ROUGE-1 with a measure of precision) as our primary metric for development. We refer
to this measure as ROUGE-1F. We also report ROUGE-1P and ROUGE-1R (precision
and recall, respectively) as well as ROUGE-2F and ROUGE-SU4F, which include bigram
match statistics and have also been shown to correlate well with human judgments. Our
implementation uses ROUGE version 1.5.5 with stemming turned on, but without stop-
word removal. These settings correspond to those used for the actual DUC competitions
(Dang, 2005); however, we use a more recent version of ROUGE.

Training data

Recall that our learning setup requires a training sample of pairs (X,Y ), where Y ⊆
Y(X). Unfortunately, while the human reference summaries providedwith theDUCdata
are high-quality, they are not extractive, thus they do not serve as examples of summaries
that we can actually model. To obtain high-quality extractive “oracle” summaries from
the human summaries, we employ a simple greedy algorithm (Algorithm 5). On each
round the sentence that achieves maximal unigram F-measure to the human references,
normalized by length, is selected and added to the extractive summary. Since high
F-measure requires high precision as well as recall, we then update the references by
removing the words “covered” by the newly selected sentence, and proceed to the next
round.
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Algorithm 5 Constructing extractive training data
Input: article cluster X , human reference word counts H , character limit b
U ← Y(X)
Y ← ∅
while U 6= ∅ do
i← argmaxi′∈U

(
ROUGE-1F(words(i′),H)√

length(i′)

)
Y ← Y ∪ {i}
H ← max(H −words(i), 0)
U ← U − ({i} ∪ {i′|length(Y ) + length(i′) > b})

end while
Output: extractive oracle summary Y

System ROUGE-1F ROUGE-2F ROUGE-SU4F

Machine 35.17 9.15 12.47
Oracle 46.59 16.18 19.52
Human 56.22 33.37 36.50

Table 4.1: ROUGE scores for the best automatic system fromDUC 2003, our heuristically-
generated oracle extractive summaries, and human summaries.

We can measure the success of this approach by calculating ROUGE scores of our
oracle summaries with respect to the human summaries. Table 4.1 shows the results
for the DUC 2003 training set. For reference, the table also includes the ROUGE
scores of the best automatic system from the DUC competition in 2003 (“machine”), as
well as the human references themselves (“human”). Note that, in the latter case, the
human summary being evaluated is also one of the four references used to compute
ROUGE; hence the scores are probably significantly higher than a human could achieve in
practice. Furthermore, it has been shown that extractive summaries, evenwhen generated
optimally, are by nature limited in quality compared to unconstrained summaries (Genest
et al., 2010). Thus we believe that the oracle summaries make strong targets for training.

Features

We next describe the feature functions that we use for this task. For diversity features
φi(X), we generate standard normalized tf-idf vectors. We tokenize the input text, remove
stop words and punctuation, and apply a Porter stemmer.2 Then, for each word w, the

2Code for this preprocessing pipeline was provided by Hui Lin and Jeff Bilmes.
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term frequency tfi(w) ofw in sentence i is defined as the number of times the word appears
in the sentence, and the inverse document frequency idf(w) is the negative logarithm of the
fraction of articles in the training set where w appears. A large value of idf(w) implies
that w is relatively rare. Finally, the vector φi(X) has one element per word, and the
value of the entry associated with word w is proportional to tfi(w)idf(w). The scale of
φi(X) is set such that ‖φi(X)‖ = 1.

Under this definition of φ, the similarity Sij between sentences i and j is known as
their cosine similarity:

Sij =

∑
w tfi(w)tfj(w)idf2(w)√∑

w tf2i (w)idf
2(w)

√∑
w tf2j(w)idf

2(w)
∈ [0, 1] . (4.15)

Two sentences are cosine similar if they contain many of the same words, particularly
words that are uncommon (and thus more likely to be salient).

We augment φi(X) with an additional constant feature taking the value ρ ≥ 0, which
is a hyperparameter. This has the effect of making all sentences more similar to one
another, increasing repulsion. We set ρ to optimize ROUGE-1F score on the training set;
in our experiments, the best choice was ρ = 0.7.

We use the very standard cosine distance as our similarity metric because we need
to be confident that it is sensible; it will remain fixed throughout the experiments. On
the other hand, weights for the quality features are learned, so we can use a variety of
intuitive measures and rely on training to find an appropriate combination. The quality
features we use are listed below. For some of the features, we make use of cosine distances;
these are computed using the same tf-idf vectors as the diversity features. When a feature
is intrinsically real-valued, we produce a series of binary features by binning. The bin
boundaries are determined either globally or locally. Global bins are evenly spaced
quantiles of the feature values across all sentences in the training set, while local bins are
quantiles of the feature values in the current cluster only.

• Constant: A constant feature allows the model to bias towards summaries with a
greater or smaller number of sentences.

• Length: We bin the length of the sentence (in characters) into five global bins.

• Document position: We compute the position of the sentence in its original
document and generate binary features indicating positions 1–5, plus a sixth binary
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feature indicating all other positions. We expect that, for newswire text, sentences
that appear earlier in an article are more likely to be useful for summarization.

• Mean cluster similarity: For each sentence we compute the average cosine dis-
tance to all other sentences in the cluster. This feature attempts to measure how
well the sentence reflects the salient words occurring most frequently in the cluster.
We use the raw score, five global bins, and ten local bins.

• LexRank: We compute continuous LexRank scores by finding the principal eigen-
vector of the row-normalized cosine similarity matrix. (See Erkan and Radev (2004)
for details.) This provides an alternative measure of centrality. We use the raw
score, five global bins, and five local bins.

• Personal pronouns: We count the number of personal pronouns (“he”, “her”,
“themselves”, etc.) appearing in each sentence. Sentences with many pronouns
may be poor for summarization since they omit important entity names.

In total we have 40 quality features; including ρ our model has 41 parameters.

Inference

At test time, we need to take the learned parameters θ and use them to predict a summary
Y for a previously unseen document cluster X . One option is to sample from the
conditional distribution, which can be done exactly and efficiently, as described in
Section 2.4.4. However, sampling occasionally produces low-probability predictions. We
obtain better performance on this task by applying two alternative inference techniques.

Greedy MAP approximation. One common approach to prediction in probabilistic
models is maximum a posteriori (MAP) decoding, which selects the highest probability
configuration. For practical reasons, and because the primary metrics for evaluation were
recall-based, the DUC evaluations imposed a length limit of 665 characters, including
spaces, on all summaries. In order to compare with prior work we also apply this limit
in our tests. Thus, our goal is to find the most likely summary, subject to a budget
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Algorithm 6 Approximately computing the MAP summary
Input: document cluster X , parameter θ, character limit b
U ← Y(X)
Y ← ∅
while U 6= ∅ do
i← argmaxi′∈U

(
Pθ(Y ∪{i}|X)−Pθ(Y |X)

length(i)

)
Y ← Y ∪ {i}
U ← U − ({i} ∪ {i′|length(Y ) + length(i′) > b})

end while
Output: summary Y

constraint:

Y MAP = argmax
Y

Pθ(Y |X)

s.t.
∑
i∈Y

length(i) ≤ b , (4.16)

where length(i) is the number of characters in sentence i, and b = 665 is the limit on
the total length. As discussed in Section 2.4.5, computing Y MAP exactly is NP-hard, but,
recalling that the optimization in Equation (4.16) is submodular, we can approximate it
through a simple greedy algorithm (Algorithm 6).

Algorithm 6 is closely related to those given by Krause and Guestrin (2005) and
especially Lin and Bilmes (2010). As discussed in Section 2.4.5, algorithms of this type
have formal approximation guarantees for monotone submodular problems. Our MAP
problem is not generally monotone; nonetheless, Algorithm 6 seems to work well in
practice, and is very fast (see Table 4.2).

Minimum Bayes risk decoding. The second inference technique we consider is mini-
mum Bayes risk (MBR) decoding. First proposed by Goel and Byrne (2000) for automatic
speech recognition, MBR decoding has also been used successfully for word alignment
and machine translation (Kumar and Byrne, 2002, 2004). The idea is to choose a pre-
diction that minimizes a particular application-specific loss function under uncertainty
about the evaluation target. In our setting we use ROUGE-1F as a (negative) loss function,
so we have

Y MBR = argmax
Y

E [ROUGE-1F(Y,Y ∗)] , (4.17)
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System Time (s)
dpp-greedy 0.15
dpp-mbr100 1.30
dpp-mbr1000 16.91
dpp-mbr5000 196.86

Table 4.2: The average time required to produce a summary for a single cluster from the
DUC 2004 test set (without parallelization).

where the expectation is over realizations of Y ∗, the true summary against which we
are evaluated. Of course, the distribution of Y ∗ is unknown, but we can assume that
our trained model Pθ(·|X) gives a reasonable approximation. Since there are exponen-
tially many possible summaries, we cannot expect to perform an exact search for Y MBR;
however, we can approximate it through sampling, which is efficient.

Combining these approximations, we have the following inference rule:

Ỹ MBR = argmax
Y r′ , r′∈{1,2,...,R}

1

R

R∑
r=1

ROUGE-1F(Y r′ , Y r) , (4.18)

where Y 1, Y 2, . . . , Y R are samples drawn from Pθ(·|X). In order to satisfy the length
constraint imposed by the evaluation, we consider only samples with length between
660 and 680 characters (rejecting those that fall outside this range), and crop Ỹ MBR to the
limit of 665 bytes if necessary. The choice of R is a tradeoff between fast running time
and quality of inference. In the following section, we report results for R = 100, 1000,

and 5000; Table 4.2 shows the average time required to produce a summary under each
setting. Note that MBR decoding is easily parallelizable, but the results in Table 4.2 are
for a single processor. Since MBR decoding is randomized, we report all results averaged
over 100 trials.

Results

We train our model with a standard L-BFGS optimization algorithm. We place a zero-
mean Gaussian prior on the parameters θ, with variance set to optimize ROUGE-1F on a
development subset of the 2003 data. We learn parameters θ on the DUC 2003 corpus,
and test them using DUC 2004 data. We generate predictions from the trained DPP
using the two inference algorithms described in the previous section, and compare their
performance to a variety of baseline systems.
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Our first and simplest baseline merely returns the first 665 bytes of the cluster text.
Since the clusters consist of news articles, this is not an entirely unreasonable summary
in many cases. We refer to this baseline as begin.

We also compare against an alternative DPP-based model with identical similarity
measure and quality features, but where the quality model has been trained using
standard logistic regression. To learn this baseline, each sentence is treated as a unique
instance to be classified as included or not included, with labels derived from our training
oracle. Thus, it has the advantages of a DPP at test time, but does not take into account
the diversity model while training; comparing to this baseline allows us to isolate the
contribution of learning the model parameters in context. Note that MBR inference
is impractical for this model because its training does not properly calibrate for overall
summary length, so nearly all samples are either too long or too short. Thus, we report
only the results obtained from greedy inference. We refer to this model as lr+dpp.

Next, we employ as baselines a range of previously proposed methods for multi-
document summarization. Perhaps the simplest andmost popular is MaximumMarginal
Relevance (MMR), which uses a greedy selection process (Carbonell andGoldstein, 1998).
MMR relies on a similarity measure between sentences, for which we use the cosine
distance measure S, and a measure of relevance for each sentence, for which we use the
same logistic regression-trained quality model as above. Sentences are chosen iteratively
according to

argmax
i∈Y(X)

[
αqi(X)− (1− α)max

j∈Y
Sij

]
, (4.19)

where Y is the set of sentences already selected (initially empty), qi(X) is the learned
quality score, and Sij is the cosine similarity between sentences i and j. The tradeoff α
is optimized on a development set, and sentences are added until the budget is full. We
refer to this baseline as lr+mmr.

We also compare against the three highest-scoring systems that actually competed
in the DUC 2004 competition—peers 65, 104, and 35—as well as the submodular
graph-based approach recently described by Lin and Bilmes (2010), which we refer to as
submod1, and the improved submodular learning approach proposed by Lin and Bilmes
(2012), which we denote submod2. We produced our own implementation of submod1,
but rely on previously reported numbers for submod2, which include only ROUGE-1
scores.

Table 4.3 shows the results for all methods on the DUC 2004 test corpus. Scores for
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System ROUGE-1F ROUGE-1P ROUGE-1R ROUGE-2F ROUGE-SU4F

begin 32.08 31.53 32.69 6.52 10.37
lr+mmr 37.58 37.15 38.05 9.05 13.06
lr+dpp 37.96 37.67 38.31 8.88 13.13
peer 35 37.54 37.69 37.45 8.37 12.90
peer 104 37.12 36.79 37.48 8.49 12.81
peer 65 37.87 37.58 38.20 9.13 13.19
submod1 38.73 38.40 39.11 8.86 13.11
submod2 39.78 39.16 40.43 - -
dpp-greedy 38.96 38.82 39.15 9.86 13.83
dpp-mbr100 38.83 38.06 39.67 8.85 13.38
dpp-mbr1000 39.79 38.96 40.69 9.29 13.87
dpp-mbr5000 40.33 39.43 41.31 9.54 14.13

Table 4.3: ROUGE scores on the DUC 2004 test set.

the actual DUC competitors differ slightly from the originally reported results because
we use an updated version of the ROUGE package. Bold entries highlight the best
performance in each column; in the case of MBR inference, which is stochastic, the
improvements are significant at 99% confidence. The DPP models outperform the
baselines in most cases; furthermore, there is a significant boost in performance due
to the use of DPP maximum likelihood training in place of logistic regression. MBR
inference performs best, assuming we take sufficiently many samples; on the other hand,
greedy inference runs more quickly than dpp-mbr100 and produces superior results.
Relative to most other methods, the DPP model with MBR inference seems to more
strongly emphasize recall. Note that MBR inference was performed with respect to
ROUGE-1F, but could also be run to optimize other metrics if desired.

Feature contributions. In Table 4.4 we report the performance of dpp-greedy when
different groups of features from Section 4.2.1 are removed, in order to estimate their
relative contributions. Length and position appear to be quite important; however,
although individually similarity and LexRank scores have only a modest impact on
performance, when both are omitted the drop is significant. This suggests, intuitively,
that these two groups convey similar information—both are essentially measures of
centrality—but that this information is important to achieving strong performance.
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Features ROUGE-1F ROUGE-1P ROUGE-1R

All 38.96 38.82 39.15
All but length 37.38 37.08 37.72
All but position 36.34 35.99 36.72
All but similarity 38.14 37.97 38.35
All but LexRank 38.10 37.92 38.34
All but pronouns 38.80 38.67 38.98
All but similarity, LexRank 36.06 35.84 36.32

Table 4.4: ROUGE scores for dpp-greedy with features removed.

4.3 Learning diversity

We next turn to learning the diversity model of a conditional DPP. In some instances
a practitioner may not know in advance what type of similarity is appropriate for the
problem at hand; in this case it would be useful to have algorithms for automatically
learning a good measure. This can be seen as analogous to recent work on learning the
kernel for support vector machines (Lanckriet et al., 2004; Bach et al., 2004; Sonnenburg
et al., 2006).

Our goal is to find a parameterization of S(X; θ) that makes maximum likelihood
learning convex and efficient. Since we have already shown how the quality model can
be learned, we focus on the case where quality is fixed and constant; that is, we can
assume L = S. Unfortunately, even in this limited setting learning the diversity model
seems to be a very difficult problem. In this section we outline some of the primary
challenges, and discuss why several natural parameterizations fail. Finally, we make a
formal conjecture that finding the maximizing likelihood diversity kernel is NP-hard.
While we do not yet know a proof, the conjecture is supported by numerical evidence.

4.3.1 Identifiability

In attempting to find efficient techniques for learning the diversity model, an immediate
difficulty arises: multiple distinct kernels L can give rise to the same distribution—that
is, the model is not identifiable. This problem is especially serious in the case where we
do not restrict the DPP kernel to be symmetric, since for any diagonal matrix D we
have det(LY ) = det([DLD−1]Y )—conjugation by a diagonal matrix does not change
the DPP distribution. However, even when our kernels are required to be symmetric,



Chapter 4. Learning 83

the problem remains. For example,

L1 =

(
1 0.5

0.5 1

)
L2 =

(
1 −0.5
−0.5 1

)
(4.20)

gives PL1 = PL2 . Furthermore, L1+L2

2
= I defines an entirely different DPP, so it is not

simply that there is a convex set of kernels with the same meaning.
In general, this lack of identifiability poses a problem because it implies that most

objective functions will be non-convex. More specifically, any function of L that depends
only on PL cannot be strictly convex unless, at a minimum, it achieves its optimum at a
distribution PL that can only be realized by a single kernel L. We will see that Lmust
be diagonal to have this property. (More generally, we will see that the function cannot
be convex unless a diagonal kernel is optimal.) Since DPPs with diagonal kernels have
no correlations between items, this is not a very compelling set of objective functions.

Of course, while identifiability fails for general L, it may hold for certain restricted
classes. In particular, since our goal is to find a useful conditional parameterization
of the diversity model S(X; θ), we may hope to find a parameterization where any
DPP on Y(X) is realizable by at most one θ. In order to do this and know when we
are successful, we must first establish a characterization of symmetric kernels that are
distinct but give rise to the same DPP. We call this characterization D-similarity. With
this understanding in hand we can then search for parameterizations that avoid the
challenges of non-identifiability.

D-similarity

Definition 4.2. Two N ×N symmetric matrices L andM are D-similar, denoted L D∼M ,
if L = DMD−1 for some N ×N diagonal matrix D with diagonal entries Dii ∈ {−1, 1} for
i = 1, 2, . . . , N .

Note that for matrices D with only −1 and +1 on the diagonal we have D = D−1,
thus the inversion is only to demonstrate the analogy to standard matrix similarity.
Intuitively, L D∼M if L can be obtained by symmetrically negating some of the rows and
columns of M . D-similarity is symmetric, since L = DMD−1 implies D−1LD = M .
It is also reflexive (with D = I) and transitive (since DD′ has only −1 and +1 on the
diagonal whenever D and D′ do), thus it is an equivalence relation.
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Theorem 4.1. L D∼M if and only if PL = PM .

Theorem 4.1 says that D-similarity is an exact characterization of kernels that give
rise to the same DPP. We prove each direction of the implication as its own lemma. The
forward direction is easy to show using simple matrix computations.

Lemma 4.1 (Theorem 4.1,→). If L D∼M , then PL = PM .

Proof. For arbitrary Y we have

det(LY ) = det(DYMYD
−1
Y ) (4.21)

= det(DY ) det(MY ) det(D−1
Y ) (4.22)

= det(MY ) . (4.23)

Since the principal minors of L andM agree everywhere, they define the same DPP.

The reverse direction is somewhat more subtle. We will initially give a proof for the
special case when all entries of L are nonzero, and then follow with the general version.
We state a few trivial lemmas first.

Lemma 4.2. If L = DMD−1, then L = (−D)M(−D)−1.

Lemma 4.3. If L andM are block diagonal,

L =

(
L1 0

0 L2

)
= diag(L1, L2) (4.24)

M =

(
M1 0

0 M2

)
= diag(M1,M2) , (4.25)

thenL1 = D1M1D
−1
1 andL2 = D2M2D

−1
2 impliesL = DMD−1, whereD = diag(D1, D2).

Lemma 4.4 (Theorem 4.1,←). If PL = PM , then L D∼M .

Proof. We begin by looking at the probabilities under PL and PM of small sets Y . For
the empty set we have

1

det(L+ I)
= PL(∅) = PM(∅) = 1

det(M + I)
, (4.26)
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thus det(L+ I) = det(M + I). For singletons we have

Lii

det(L+ I)
= PL({i}) = PM({i}) = Mii

det(M + I)
. (4.27)

Since we have already established that det(L+ I) = det(M + I), we have Lii =Mii for
all i. Proceeding similarly for pairs of elements, we have∣∣∣∣∣ Lii Lij

Lji Ljj

∣∣∣∣∣ =
∣∣∣∣∣ Mii Mij

Mji Mjj

∣∣∣∣∣ , (4.28)

and thus L2
ij =M2

ij , or Lij = ±Mij .
To summarize, we know that the diagonals of L andM agree, and the off-diagonal

elements agree up to sign. It remains to show that the pattern of sign differences
corresponds to a particular choice ofD. Trivially, we can choose anyD whenN = 1. We
now proceed by induction. First write L andM in block form, splitting on the partition
{1, 2, . . . , N} = {1, 2, . . . , N − 1} ∪ {N}:

L =

(
L[N−1] L[N−1]N

LN [N−1] LNN

)
M =

(
M[N−1] M[N−1]N

MN [N−1] MNN

)
, (4.29)

where [N − 1] denotes {1, 2, . . . , N − 1}. Using the inductive hypothesis and other facts
from above, we have(

L[N−1] L[N−1]N

LN [N−1] LNN

)
=

(
EM[N−1]E

−1 FM[N−1]N

MN [N−1]F
−1 MNN

)
, (4.30)

where E and F are (N − 1)× (N − 1) diagonal matrices with ±1 on the diagonal. E
comes from the inductive hypothesis, and F comes from the fact that LiN = ±MiN for
all i. If we can show that E = dNF for dN ∈ {−1, 1}, then we will have L = DMD−1

for D = diag(E, dN).
For any two elements i, j ∈ {1, 2, . . . , N − 1}, we can look at the probability of the

set Y = {i, j, N}. We have

PL(Y ) =

∣∣∣∣∣∣∣
Mii EiiMijEjj FiiMiN

EjjMjiEii Mjj FjjMjN

MNiFii MNjFjj MNN

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
Mii Mij MiN

Mji Mjj MjN

MNi MNj MNN

∣∣∣∣∣∣∣ , (4.31)
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where the second equality is by the assumption that PL = PM . Writing out the 3× 3

determinants and subtracting off equal terms, we have

MijMiNMjNEiiEjjFiiFjj =MijMiNMjN . (4.32)

Assume for now that the entries ofM are nonzero. Then Equation (4.32) implies

EiiEjjFiiFjj = 1 , (4.33)

thus Eii = Ejj if and only if Fii = Fjj . Since this holds for any i and j, E and F agree
up to (global) sign, and we are done.

In the general case, whereM may contain zeros, we must be a little more careful.
First, we note that ifMiN = 0 we can set Fii arbitrarily and reduce the problem. Thus
without loss of generality we assumeMiN 6= 0 for all i. Associate withM[N−1] a graph G
on N − 1 nodes, where nodes i and j are adjacent wheneverMij is nonzero. Assume
first that G is connected, and consider a spanning tree T of G. For each edge ij ∈ T ,
we have Mij 6= 0. Thus by Equation (4.32) we have Eii = Ejj ⇔ Fii = Fjj . We can
logically combine these implications over multiple edges; for example, if ij and jk are
both edges in T , then we have Eii = Ekk ⇔ Fii = Fkk, since either Eii = Ejj = Ekk or
Eii 6= Ejj 6= Ekk, with the same holding for F in either case. In general, the number of
changes in sign along any path in T is the same for E and F . Since T spans all of G, we
have that E and F are equal up to a global sign, and we are done.

Now suppose that G is disconnected. We can view M[N−1] as a block diagonal
matrix with blocks corresponding to the connected components of G, and then for each
component C we have, analogously to Equation (4.30),∣∣∣∣∣ LC LCN

LNC LNN

∣∣∣∣∣ =
∣∣∣∣∣ ECMCE

−1
C FCMCN

MNCF
−1
C MNN

∣∣∣∣∣ . (4.34)

We can apply the previous argument to show that EC = dCFC with dC ∈ {−1, 1} for all
components C. All that remains is to show that we can combine the component pieces
in a globally consistent way. To do so, we apply Proposition 4.2 and Proposition 4.3
and observe that we can flip the sign of any EC without altering the fact that L[N−1] =

EM[N−1]E
−1. Thus, we choose the signs of the components EC so that all of the dC are

equal, and we have that E and F agree up to a global sign.
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Discussion

The condition that diagonal entries of D be ±1 can be seen as the natural restriction
of conjugation by a diagonal matrix to the setting where kernels must be symmetric.
That is, for a general symmetricM and an arbitrary diagonal matrix D, L = DMD−1

is symmetric only when Dii

Djj
=

Djj

Dii
for all i, j. Thus the diagonal entries of D must be

equal up to sign.
We can also appeal to the geometric intuitions from Section 2.2.1; from that per-

spective, the mappingM → DMD−1 is equivalent to flipping the signs of the vectors
associated with items i where Dii = −1. It is clear that such flips may change the signs
of the kernel entries, but the squared volume spanned by the vectors (which removes
any sign) remains the same.

Although we do not give details here, it is possible to “canonicalize” a DPP using
the notion of D-similarity; that is, we can identify a single kernel in each equivalence
class as the canonical kernel for that DPP. To see how this can be done, assume that all
of the entries inM are nonzero; we can then canonically require that the first row of L
is positive. For example, let D11 = 1 (arbitrarily, by Proposition 4.2). We can then set
D22 to ensure L12 > 0, D33 to ensure L13 > 0, and so on. WhenM may have zeros, the
process is somewhat more complicated, but we can use the intuitions from the proof of
Lemma 4.4 and ensure positivity of L on the edges of a canonical spanning tree of the
graph associated withM .

In general, D-similarity implies that there are up to 2N−1 distinct kernels giving rise
to the same DPP. (In fact, the number is exactly 2N−|comp(G)| where |comp(G)| is the
number of connected components of the graph G associated with a kernel matrix of
the DPP.) This implies that the landscape of any objective function is likely to be badly
non-convex and hence difficult to optimize. Formally, we can prove the claim made
earlier.

Proposition 4.2. Any function g(L) that depends on L only through PL is not convex unless
there exists a diagonal matrix that maximizes g.

Proof. Suppose that a non-diagonal matrixM is optimal for g. LetD be a random diago-
nal matrix with diagonal entries chosen independently and uniformly from {−1, 1}, and
letL = DMD−1. SinceM is optimal and g(L) depends only onPL, L is also guaranteed
to be optimal by Theorem 4.1. If g is convex then the set of kernels maximizing g is
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convex, so E[L] is also optimal. But E[Lij] = E[DiiMijDjj] = 0 whenever i 6= j. Thus a
diagonal kernel is optimal whenever g is convex.

4.3.2 Parameterizations

Theorem 4.1 gives us a complete characterization of the identifiability problem, and
demonstrates why optimization over the set of all kernels is generally non-convex. How-
ever, we can now try to use this understanding to develop parameterizations of the
diversity model that, by implicitly restricting the domain of kernel matrices to be consid-
ered, yield efficient, convexmaximum likelihood optimizations. In this section we review
several natural parameterizations, discuss how they solve the identifiability problem, and
then show why, unfortunately, none of them achieves the desired larger result.

Positivity constraints

Perhaps the most natural approach to dealing with the redundancies of D-similarity is
to simply constrain most of those redundancies away. We can do this, for example, by
requiring all the entries of the kernel to be nonnegative. It is easy to see that at most one
kernel for a given DPP can have this property. Of course, there are many DPPs that have
no kernel with this property, as evidenced by the additional surface visible in Figure 3.3c
when we allow negative entries in S. However, this may be an acceptable restriction of
expressiveness if it leads to an efficient learning formulation.

Thus, forgoing for now the conditional formulation of DPPs and the Gram decom-
position of S into dot products of φ vectors, we propose the following direct parameteri-
zation:

S(θ) = [θij]
N
i,j=1 , (4.35)

where θij ≥ 0 for all i, j, θii = 1 for all i, and [θij]
N
i,j=1 is symmetric and positive

semidefinite. In other words, S is simply given element-wise by θ. The constraints
on θ are all convex and manageable (i.e., we can project onto them efficiently), so
the main remaining question is whether the likelihood function is concave under this
parameterization.

Unfortunately, it is not. Because the log-determinant is a concave function of its
matrix argument, the numerator det(LY ) of the likelihood function yields a conveniently
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Figure 4.2: Random one-dimensional slices of the optimization landscape for the positive
constraints parameterization.

concave term, but the denominator det(L+ I) yields a (problematic) convex term. The
sum of these terms is neither convex nor concave. We can get a bit of intuition about the
nature of the non-convexity by visualizing the optimization landscape along random
directions in parameter space. In Figure 4.2, we show eight such one-dimensional
landscapes for N = 50. Each landscape is produced by generating a pair of random
θ satisfying the constraints described above, and then plotting the log-likelihood of a
random cardinality-10 subset of 1, 2, . . . , 50 along the line segment connecting the two
parameters. The likelihood appears to convex along some lines, concave along others,
and neither along yet others. In all, simple positivity constraints do not appear to yield a
useful learning formulation.

Matrix exponential

Inspired by standard log-linear models, which have a concave log-likelihood function,
we can propose a second parameterization based on matrix exponentials. We define

S(θ) = exp
(
[θij]

N
i,j=1

)
, (4.36)

where θ now forms a symmetric matrix which does not need to be positive semidefi-
nite, due to the exponential. (Recall that exp(M) is, roughly, the matrix obtained by
eigendecomposingM , exponentiating its eigenvalues, and then reassembling the ma-
trix.) Because exp(DMD−1) = D exp(M)D−1 when D is invertible, we can ensure
identifiability by constraining θ to be nonnegative, as before.
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Again, the constraints are easy to deal with, and the main question is whether the
log-likelihood is concave. In the previous section, we had a concave term from the
numerator det(LY ), and a convex term from the denominator det(L + I). Under the
exponential parameterization, the denominator term becomes concave:

log det(eA + I) + log det(eB + I) = log det
[
(eA + I)(eB + I)

]
(4.37)

≥ log det(eAeB + I) (4.38)

≥ log det(eA+B + I) . (4.39)

The first inequality follows from the fact that eA and eB are positive semidefinite, and
the second follows from a generalization of the Golden-Thompson inequality (see, for
instance, Bhatia (1997), Section IX.3). Thus by introducing the exponential we have put
the denominator term into a convenient form.

Wemight hope that, because log det(exp(M)) = tr(M) is linear inM , the numerator
will also be manageable. However, because the submatrix corresponding to Y is taken
after the exponentiation, this is not guaranteed. In fact, we can show that the numerator
term is now convex:

log det([eA]Y ) + log det([eB]Y ) = log det
(
[eA]Y [e

B]Y
)

(4.40)

≥ log det([eAeB]Y ) , (4.41)

where we have used the generalized Golden-Thompson inequality again. This leads to a
similarly challenging optimization landscape, sampled as before in Figure 4.3.

Kernel combination

In the interest of simplifying the parameterization, as well as re-introducing the condi-
tionalization based on an input X , we propose now a third possible parameterization of
the diversity model based on combining a set of fixed kernels. Assume as before that
feature functions φi ∈ RD are provided for every item i. While we previously used these
features to directly define Sij = φ>

i φj , we can imagine using them in a general inner
product:

Sij = φ>
i W (θ)φj , (4.42)
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Figure 4.3: Random one-dimensional slices of the optimization landscape for the expo-
nential parameterization.

whereW (θ) is a D ×D matrix parameterized by θ. One simple approach is to letW
be a diagonal matrix, with θ ∈ RD, θ ≥ 0 giving the diagonal entries. In this setting, θl
simply scales the influence of feature l. If, as before, we let B be the matrix whose ith
column is φi, then we have

S = B>W (θ)B =
D∑
r=1

θlSl , (4.43)

where Sl is the N ×N rank-one kernel formed by taking the outer product of row l of
B with itself. Thus S is just the linear combination of a set of fixed kernels.

This parameterization is appealing because it offers a natural way to utilize domain
knowledge in the form of input features. Furthermore, we can avoid the identifiabil-
ity problem by choosing features that prevent the construction of D-similar kernels,
for instance, by ensuring that all features are positive. We can also consider allowing
non-diagonalW as a possible extension for more flexibility. Unfortunately, choosing
θ to maximize conditional log-likelihood is again a non-convex problem. While the
exact shape of the optimization landscape will depend on the chosen features, we can
plot the likelihood function along randomly chosen lines in the case where each φi is
a random vector with entries chosen independently from the uniform distribution on
[0, 1]. Figure 4.4 shows the results.
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Figure 4.4: Random one-dimensional slices of the optimization landscape for the com-
bination of kernels.

Discussion

The failure of these parameterizations suggests that identifiability and Theorem 4.1 may
represent just one facet of a complex, combinatorial optimization structure inherent to
DPPs. We can handle identifiability through D-similarity, but the overall complexity
seems to persist. The objective functions discussed above are at least smooth, but gradient
methods perform poorly in practice, getting quickly stuck in bad local optima. On
the other hand, natural convex approximations to the likelihood objective seem to be
overly simplifying, often resulting in learning uninformative diagonal kernels. Currently,
finding an efficient and effective learning formulation for the diversity model of a DPP
is an open problem.

4.3.3 NP-hardness

We conjecture that learning a combination of kernels to maximize likelihood may in
fact be NP-hard. In this section we lay out the basic argument. While we do not yet
know a complete proof, the reduction from exact 3-cover is intuitive and supported by
numerical evidence.

Conjecture 4.1. Given a sequence ofN×N symmetric, positive semidefinite kernelsS1, S2, . . . , SD

indexed by the elements of Y and a sequence of subsets Y1, Y2, . . . , YT of Y , finding θ ∈ RD,
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θ ≥ 0 to maximize

L(θ) =
T∑
t=1

[log det(S(θ)Yt)− log det(S(θ) + I)] ; S(θ) =
D∑
l=1

θlSl (4.44)

is NP-hard.

Reduction. We reduce from exact 3-cover (X3C), which is NP-complete. Recall that an
instance of X3C consists of a set Y = {1, 2, . . . , N} and a collection C of three-element
subsets of Y . The X3C problem is to decide whether there is a sub-collection C ′ ⊆ C

such that every element of Y appears exactly once in C ′.
Given an instance of X3C, we define a DPP learning problem as follows. For each

three-element set Cl ∈ C, construct a rank-one kernel Sl which is the outer product of
the characteristic vector of Cl with itself. That is, Sl is a N ×N matrix which is all zeros
except for a symmetric 3× 3 block of ones, where the indices of the ones correspond
to elements of Cl. Then define Y1 = {1}, Y2 = {2}, . . . , YN = {N}, so the training set
consists of all the singletons. This reduction can be performed in polynomial time.

We claim that, if there is at least one exact 3-cover inC and θmaximizes the probability
of the training set under Equation (4.44), then there is some exact cover C ′ ⊆ C such
that θ assigns positive weight to a kernel Sl if and only if the corresponding set Cl is in
C ′. In other words, we can find the optimal θ and check if the kernels to which it gives
positive weight correspond to an exact 3-cover. If they do, then we have answered the
instance of X3C in the affirmative. If they do not, then there must not exist an exact
3-cover, assuming the claim is true.

The claim made in the reduction implies that, when an exact 3-cover exists, the
optimal DPP kernel is block diagonal (under a suitable re-ordering), where each block
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is 3× 3 and has rank one:

S∗ =



θl1 θl1 θl1

θl1 θl1 θl1 0 · · · 0

θl1 θl1 θl1

θl2 θl2 θl2

0 θl2 θl2 θl2 · · · 0

θl2 θl2 θl2
... ... . . . ...

θl3 θl3 θl3

0 0 · · · θl3 θl3 θl3

θl3 θl3 θl3



. (4.45)

Intuitively, a DPP with this kernel assigns zero probability to any set containing more
than one item from any block; since the training data include only singletons, this boosts
the training likelihood by emphasizing small sets. More generally, S∗ achieves the lowest
possible rank for a kernel that gives nonzero probability to the training data, since we
need at least N

3
kernels to cover the diagonal. Since any set with cardinality greater

than the rank of the DPP kernel has zero probability, S∗ is in some sense the “smallest”
possible DPP.

We claim that the optimal θ in fact assigns equal weight to the kernels associated with
the exact cover, so that entries in S∗ are either 0 or α for some α. We can compute the
value that αmust take, if this claim is true.

Lemma 4.5. If K is the marginal kernel of the maximum likelihood DPP associated with the
optimization in Conjecture 4.1, then tr(K) = 1

T

∑T
t=1 |Yt|.

Proof. If θ is optimal, then the gradient of L(θ) must be zero. We have

∂L
∂θl

=
T∑
t=1

[
tr(S(θ)−1

Yt
[Sl]Yt)− tr((S(θ) + I)−1Sl)

]
. (4.46)

Multiplying by θl and then summing over all l, we have that the following expression
must be zero:

T∑
t=1

[
tr(S(θ)−1

Yt
S(θ)Yt)− tr((S(θ) + I)−1S(θ))

]
(4.47)
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=
T∑
t=1

|Yt| − T tr((S(θ) + I)−1S(θ)) . (4.48)

Recalling that K = (S(θ) + I)−1S(θ), we simply divide through by T .

Corollary 4.1. If the training set consists of singletons, as in the reduction for Conjecture 4.1,
we have tr(K) = 1.

Lemma 4.5 says that the expected cardinality of the learned DPPmust equal the mean
cardinality of the training set. We can now compute that if S∗ is of the form previously
described, with N

3
blocks of the form α α α

α α α

α α α

 , (4.49)

then K has N
3
blocks of the form

α
1+3α

α
1+3α

α
1+3α

α
1+3α

α
1+3α

α
1+3α

α
1+3α

α
1+3α

α
1+3α

 . (4.50)

Thus to make tr(K) = 1 we must have α = 1
N−3

.
After extensive numerical simulations, we know of no θ that achieves a higher like-

lihood than assigning a weight of 1
N−3

to each of the kernels associated with an exact
3-cover, and zero otherwise. We suspect, therefore, that Conjecture 4.1 is true. However,
finding a proof remains an open problem.



5
k-DPPs

A determinantal point process assigns a probability to every subset of the ground set Y .
This means that, with some probability, a sample from the process will be empty; with
some probability, it will be all of Y . In many cases this is not desirable. For instance,
we might want to use a DPP to model the positions of basketball players on a court,
under the assumption that a team tends to spread out for better coverage. In this setting,
we know that with very high probability each team will have exactly five players on the
court. Thus, if our model gives some probability of seeing zero or fifty players, it is not
likely to be a good fit.

We showed in Section 2.4.4 that there exist elementary DPPs having fixed cardinality
k; however, this is achieved only by focusing exclusively (and equally) on k specific
“aspects” of the data, as represented by eigenvectors of the kernel. Thus, for DPPs, the
notions of size and content are fundamentally intertwined. We cannot change one without
affecting the other. This is a serious limitation on the types of distributions than can be
expressed; for instance, a DPP cannot even capture the uniform distribution over sets of
cardinality k.

96
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More generally, even for applications where the number of items is unknown, the
size model imposed by a DPP may not be a good fit. We have seen that the cardinality
of a DPP sample has a simple distribution: it is the number of successes in a series of
Bernoulli trials. But while this distribution characterizes certain types of data, other
cases might look very different. For example, picnickers may tend to stake out diverse
positions in a park, but on warm weekend days there might be hundreds of people, and
on a rainy Tuesday night there are likely to be none. This bimodal distribution is quite
unlike the sum of Bernoulli variables imposed by DPPs.

Perhaps most importantly, in some cases we do not even want to model cardinality
at all, but instead offer it as a parameter to the practitioner. For example, a search engine
might need to deliver ten diverse results to its desktop users, but only five to its mobile
users. This ability to control the size of a DPP “on the fly” can be crucial in real-world
applications.

In this chapter we introduce k-DPPs, which address the issues described above by
conditioning aDPP on the cardinality of the random setY . This simple change effectively
divorces the DPP content model, with its intuitive diversifying properties, from the DPP
size model, which is not always appropriate. We can then use the DPP content model
with a size model of our choosing, or simply set the desired size based on context. The
result is a significantly more expressive modeling approach (which can even have limited
positive correlations) and increased control.

We begin by defining k-DPPs. The conditionalization they require, though simple
in theory, necessitates new algorithms for inference problems like normalization and
sampling. Naively, these tasks require exponential time, but we show that through
recursions for computing elementary symmetric polynomials we can solve them exactly
in polynomial time. Finally, we demonstrate the use of k-DPPs on an image search
problem, where the goal is to show users diverse sets of images that correspond to their
query.

5.1 Definition

A k-DPP on a discrete set Y = {1, 2, . . . , N} is a distribution over all subsets Y ⊆ Y with
cardinality k. In contrast to the standard DPP, which models both the size and content
of a random subset Y , a k-DPP is concerned only with the content of a random k-set.
Thus, a k-DPP is obtained by conditioning a standard DPP on the event that the set Y
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has cardinality k. Formally, the k-DPP Pk
L gives probabilities

P k
L(Y ) =

det(LY )∑
|Y ′|=k det(LY ′)

, (5.1)

where |Y | = k and L is a positive semidefinite kernel. Compared to the standard DPP,
the only changes are the restriction on Y and the normalization constant. While in a
DPP every k-set Y competes with all other subsets of Y , in a k-DPP it competes only
with sets of the same cardinality. This subtle change has significant implications.

For instance, consider the seemingly simple distribution that is uniform over all sets
Y ⊆ Y with cardinality k. If we attempt to build a DPP capturing this distribution
we quickly run into difficulties. In particular, the marginal probability of any single
item is k

N
, so the marginal kernelK, if it exists, must have k

N
on the diagonal. Likewise,

the marginal probability of any pair of items is k(k−1)
N(N−1)

, and so by symmetry the off
diagonal entries of K must be equal to a constant. As a result, any valid marginal kernel
has to be the sum of a constant matrix and a multiple of the identity matrix. Since
a constant matrix has at most one nonzero eigenvalue and the identity matrix is full
rank, it is easy to show that, except in the special cases k = 0, 1, N − 1, the resulting
kernel has full rank. But we know that a full rank kernel implies that the probability
of seeing all N items together is nonzero. Thus the desired process cannot be a DPP
unless k = 0, 1, N − 1, or N . On the other hand, a k-DPP with the identity matrix as its
kernel gives the distribution we are looking for. This improved expressiveness can be
quite valuable in practice.

5.1.1 Alternative models of size

Since a k-DPP is conditioned on cardinality, k must come from somewhere outside of
the model. In many cases, k may be fixed according to application needs, or perhaps
changed on the fly by users or depending on context. This flexibility and control is one
of the major practical advantages of k-DPPs. Alternatively, in situations where we wish
to model size as well as content, a k-DPP can be combined with a size model Psize that
assigns a probability to every possible k ∈ {1, 2, . . . , N}:

P(Y ) = Psize(|Y |)P |Y |
L (Y ) . (5.2)
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Since the k-DPP is a proper conditional model, the distribution P is well-defined. By
choosing Psize appropriate to the task at hand, we can effectively take advantage of the
diversifying properties of DPPs in situations where the DPP size model is a poor fit.

As a side effect, this approach actually enables us to use k-DPPs to build models with
both negative and positive correlations. For instance, if Psize indicates that there are likely
to be either hundreds of picnickers in the park (on a nice day) or, otherwise, just a few,
then knowing that there are fifty picnickers today implies that there are likely to be even
more. Thus, k-DPPs can yield more expressive models than DPPs in this sense as well.

5.2 Inference

Of course, increasing the expressiveness of the DPP causes us to wonder whether, in
doing so, we might have lost some of the convenient computational properties that
made DPPs useful in the first place. Naively, this seems to be the case; for instance,
while the normalizing constant for a DPP can be written in closed form, the sum in
Equation (5.1) is exponential and seems hard to simplify. In this section, we will show
how k-DPP inference can in fact be performed efficiently, using recursions for computing
the elementary symmetric polynomials.

5.2.1 Normalization

Recall that the kth elementary symmetric polynomial on λ1, λ2 . . . , λN is given by

ek(λ1, λ2, . . . , λN) =
∑

J⊆{1,2,...,N}
|J|=k

∏
n∈J

λn . (5.3)

For instance,

e1(λ1, λ2, λ3) = λ1 + λ2 + λ3 (5.4)

e2(λ1, λ2, λ3) = λ1λ2 + λ1λ3 + λ2λ3 (5.5)

e3(λ1, λ2, λ3) = λ1λ2λ3 . (5.6)
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Proposition 5.1. The normalization constant for a k-DPP is

Zk =
∑

|Y ′|=k

det(LY ′) = ek(λ1, λ2, . . . , λN) , (5.7)

where λ1, λ2, . . . , λN are the eigenvalues of L.

Proof. One way to see this is to examine the characteristic polynomial of L, det(L− λI)
(Gel’fand, 1989). We can also show it directly using properties of DPPs. Recalling that∑

Y⊆Y

det(LY ) = det(L+ I) , (5.8)

we have ∑
|Y ′|=k

det(LY ′) = det(L+ I)
∑

|Y ′|=k

PL(Y
′) , (5.9)

where PL is the DPP with kernel L. Applying Lemma 2.2, which expresses any DPP as a
mixture of elementary DPPs, we have

det(L+ I)
∑

|Y ′|=k

PL(Y
′) =

∑
|Y ′|=k

∑
J⊆{1,2,...,N}

PVJ (Y ′)
∏
n∈J

λn (5.10)

=
∑
|J |=k

∑
|Y ′|=k

PVJ (Y ′)
∏
n∈J

λn (5.11)

=
∑
|J |=k

∏
n∈J

λn , (5.12)

where we use Lemma 2.3 in the last two steps to conclude that PVJ (Y ′) = 0 unless
|J | = |Y ′|. (Recall that VJ is the set of eigenvectors ofL associated with λn for n ∈ J .)

To compute the kth elementary symmetric polynomial, we can use the recursive
algorithm given in Algorithm 7, which is based on the observation that every set of k
eigenvalues either omits λN , in which case wemust choose k of the remaining eigenvalues,
or includes λN , in which case we get a factor of λN and choose only k−1 of the remaining
eigenvalues. Formally, letting eNk be a shorthand for ek(λ1, λ2, . . . , λN), we have

eNk = eN−1
k + λNe

N−1
k−1 . (5.13)

Note that a variety of recursions for computing elementary symmetric polynomials exist,
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Algorithm 7 Computing the elementary symmetric polynomials
Input: k, eigenvalues λ1, λ2, . . . λN
en0 ← 1 ∀ n ∈ {0, 1, 2, . . . , N}
e0l ← 0 ∀ l ∈ {1, 2, . . . , k}
for l = 1, 2, . . . k do

for n = 1, 2, . . . , N do
enl ← en−1

l + λne
n−1
l−1

end for
end for
Output: ek(λ1, λ2, . . . , λN) = eNk

including Newton’s identities, the Difference Algorithm, and the Summation Algorithm
(Baker and Harwell, 1996). Algorithm 7 is essentially the Summation Algorithm, which
is both asymptotically faster and numerically more stable than the other two, since it
uses only sums and does not rely on precise cancellation of large numbers.

Algorithm 7 runs in time O(Nk). Strictly speaking, the inner loop need only iterate
up toN − k+ l in order to obtain eNk at the end; however, by going up toN we compute
all of the preceding elementary symmetric polynomials eNl along the way. Thus, by
running Algorithm 7 with k = N we can compute the normalizers for k-DPPs of every
size in time O(N2). This can be useful when k is not known in advance.

5.2.2 Sampling

Since a k-DPP is just a DPP conditioned on size, we could sample a k-DPP by repeatedly
sampling the corresponding DPP and rejecting the samples until we obtain one of size
k. To make this more efficient, recall from Section 2.4.4 that the standard DPP sampling
algorithm proceeds in two phases. First, a subset V of the eigenvectors of L is selected at
random, and then a set of cardinality |V | is sampled based on those eigenvectors. Since
the size of a sample is fixed in the first phase, we could reject the samples before the
second phase even begins, waiting until we have |V | = k. However, rejection sampling
is likely to be slow. It would be better to directly sample a set V conditioned on the fact
that its cardinality is k. In this section we show how sampling k eigenvectors can be
done efficiently, yielding a sampling algorithm for k-DPPs that is asymptotically as fast
as sampling standard DPPs.

We can formalize the intuition above by rewriting the k-DPP distribution in terms
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Algorithm 8 Sampling k eigenvectors
Input: k, eigenvalues λ1, λ2, . . . , λN
compute enl for l = 0, 1, . . . , k and n = 0, 1, . . . , N (Algorithm 7)
J ← ∅
l← k
for n = N, . . . , 2, 1 do

if l = 0 then
break

end if
if u ∼ U [0, 1] < λn

en−1
l−1

enl
then

J ← J ∪ {n}
l← l − 1

end if
end for
Output: J

of the corresponding DPP:

Pk
L(Y ) =

1

eNk
det(L+ I)PL(Y ) (5.14)

whenever |Y | = k, where we replace the DPP normalization constant with the k-DPP
normalization constant using Proposition 5.1. Applying Lemma 2.2 and Lemma 2.3 to
decompose the DPP into elementary parts yields

Pk
L(Y ) =

1

eNk

∑
|J |=k

PVJ (Y )
∏
n∈J

λn . (5.15)

Therefore, a k-DPP is also a mixture of elementary DPPs, but it only gives nonzero
weight to those of dimension k. Since the second phase of DPP sampling provides a
means for sampling from any given elementary DPP, we can sample from a k-DPP if
we can sample index sets J according to the corresponding mixture components. Like
normalization, this is naively an exponential task, but we can do it efficiently using the
recursive properties of elementary symmetric polynomials.

Theorem 5.1. Let J be the desired random variable, so that Pr(J = J) = 1
eNk

∏
n∈J λn when

|J | = k, and zero otherwise. Then Algorithm 8 yields a sample for J .

Proof. If k = 0, then Algorithm 8 returns immediately at the first iteration of the loop
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with J = ∅, which is the only possible value of J .
If N = 1 and k = 1, then J must contain the single index 1. We have e11 = λ1 and

e00 = 1, thus λ1 e
0
0

e11
= 1, and Algorithm 8 returns J = {1} with probability 1.

We proceed by induction and compute the probability that Algorithm 8 returns
J for N > 1 and 1 ≤ k ≤ N . By inductive hypothesis, if an iteration of the loop in
Algorithm 8 begins with n < N and 0 ≤ l ≤ n, then the remainder of the algorithm
adds to J a set of elements J ′ with probability

1

enl

∏
n′∈J ′

λn′ (5.16)

if |J ′| = l, and zero otherwise.
Now suppose that J contains N , J = J ′ ∪ {N}. Then N must be added to J in the

first iteration of the loop, which occurs with probability λN
eN−1
k−1

eNk
. The second iteration

then begins with n = N − 1 and l = k − 1. If l is zero, we have the immediate base
case; otherwise we have 1 ≤ l ≤ n. By the inductive hypothesis, the remainder of the
algorithm selects J ′ with probability

1

eN−1
k−1

∏
n∈J ′

λn (5.17)

if |J ′| = k − 1, and zero otherwise. Thus Algorithm 8 returns J with probability(
λN

eN−1
k−1

eNk

)
1

eN−1
k−1

∏
n∈J ′

λn =
1

eNk

∏
n∈J

λn (5.18)

if |J | = k, and zero otherwise.
On the other hand, if J does not containN , then the first iteration must add nothing

to J ; this happens with probability

1− λN
eN−1
k−1

eNk
=
eN−1
k

eNk
, (5.19)

where we use the fact that eNk − λNeN−1
k−1 = eN−1

k . The second iteration then begins with
n = N − 1 and l = k. We observe that if N − 1 < k, then Equation (5.19) is equal to
zero, since enl = 0 whenever l > n. Thus almost surely the second iteration begins with
k ≤ n, and we can apply the inductive hypothesis. This guarantees that the remainder
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of the algorithm chooses J with probability

1

eN−1
k

∏
n∈J

λn (5.20)

whenever |J | = k. The overall probability that Algorithm 8 returns J is therefore(
eN−1
k

eNk

)
1

eN−1
k

∏
n∈J

λn =
1

eNk

∏
n∈J

λn (5.21)

if |J | = k, and zero otherwise.

Algorithm 8 precomputes the values of e11, . . . , eNk , which requires O(Nk) time using
Algorithm 7. The loop then iterates at mostN times and requires only a constant number
of operations, so Algorithm 8 runs in O(Nk) time overall. By Equation (5.15), selecting
J with Algorithm 8 and then sampling from the elementary DPP PVJ generates a sample
from the k-DPP. As shown in Section 2.4.4, sampling an elementary DPP can be done
in O(Nk3) time (see the second loop of Algorithm 1), so sampling k-DPPs is O(Nk3)
overall, assuming we have an eigendecomposition of the kernel in advance. This is no
more expensive than sampling a standard DPP.

5.2.3 Marginalization

Since k-DPPs are not DPPs, they do not in general have marginal kernels. However, we
can still use their connection to DPPs to compute the marginal probability of a set A,
|A| ≤ k:

Pk
L(A ⊆ Y ) =

∑
|Y ′|=k−|A|
A∩Y ′=∅

Pk
L(Y

′ ∪ A) (5.22)

=
det(L+ I)

Zk

∑
|Y ′|=k−|A|
A∩Y ′=∅

PL(Y
′ ∪ A) (5.23)

=
det(L+ I)

Zk

∑
|Y ′|=k−|A|
A∩Y ′=∅

PL(Y = Y ′ ∪ A|A ⊆ Y )PL(A ⊆ Y ) (5.24)

=
ZA

k−|A|

Zk

det(L+ I)

det(LA + I)
PL(A ⊆ Y ) , (5.25)



Chapter 5. k-DPPs 105

whereLA is the kernel, given in Equation (2.42), of the DPP conditioned on the inclusion
of A, and

ZA
k−|A| = det(LA + I)

∑
|Y ′|=k−|A|
A∩Y ′=∅

PL(Y = Y ′ ∪ A|A ⊆ Y ) (5.26)

=
∑

|Y ′|=k−|A|
A∩Y ′=∅

det(LA
Y ′) (5.27)

is the normalization constant for the (k−|A|)-DPP with kernel LA. That is, the marginal
probabilities for a k-DPP are just the marginal probabilities for a DPP with the same
kernel, but with an appropriate change of normalizing constants. We can simplify
Equation (5.25) by observing that

det(LA)

det(L+ I)
=
PL(A ⊆ Y )

det(LA + I)
, (5.28)

since the left hand side is the probability (under the DPP with kernel L) that A occurs
by itself, and the right hand side is the marginal probability of A multiplied by the
probability of observing nothing else conditioned on observing A: 1/ det(LA + I). Thus
we have

Pk
L(A ⊆ Y ) =

ZA
k−|A|

Zk

det(LA) = ZA
k−|A|Pk

L(A) . (5.29)

That is, the marginal probability of A is the probability of observing exactly A times the
normalization constant when conditioning on A. Note that a version of this formula
also holds for standard DPPs, but there it can be rewritten in terms of the marginal
kernel.

Singleton marginals

Equations (5.25) and (5.29) are general but require computing large determinants and
elementary symmetric polynomials, regardless of the size ofA. Moreover, those quantities
(for example, det(LA + I)) must be recomputed for each unique A whose marginal
probability is desired. Thus, finding the marginal probabilities of many small sets is
expensive compared to a standard DPP, where we need only small minors ofK. However,
we can derive a more efficient approach in the special but useful case where we want to
know all of the singleton marginals for a k-DPP—for instance, in order to implement
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quality learning as described in Section 4.2.
We start by using Equation (5.15) to write the marginal probability of an item i in

terms of a combination of elementary DPPs:

Pk
L(i ∈ Y ) =

1

eNk

∑
|J |=k

PVJ (i ∈ Y )
∏
n′∈J

λn′ . (5.30)

Because the marginal kernel of the elementary DPP PVJ is given by
∑

n∈J vnv
>
n , we have

Pk
L(i ∈ Y ) =

1

eNk

∑
|J |=k

(∑
n∈J

(v>
nei)

2

) ∏
n′∈J

λn′ (5.31)

=
1

eNk

N∑
n=1

(v>
nei)

2
∑

J⊇{n},|J |=k

∏
n′∈J

λn′ (5.32)

=
N∑

n=1

(v>
nei)

2λn
e−n
k−1

eNk
, (5.33)

where e−n
k−1 = ek−1(λ1, λ2, . . . , λn−1, λn+1, . . . , λN) denotes the (k− 1)-order elementary

symmetric polynomial for all eigenvalues of L except λn. Note that λne−n
k−1/e

N
k is exactly

the marginal probability that n ∈ J when J is chosen using Algorithm 8; in other words,
the marginal probability of item i is the sum of the contributions (v>

nei)
2 made by each

eigenvector scaled by the respective probabilities that the eigenvectors are selected. The
contributions are easily computed from the eigendecomposition of L, thus we need only
eNk and e−n

k−1 for each value of n in order to calculate the marginals for all items in O(N2)

time, or O(ND) time if the rank of L is D < N .
Algorithm 7 computes eN−1

k−1 = e−N
k−1 in the process of obtaining eNk , so naively we

could run Algorithm 7 N times, repeatedly reordering the eigenvectors so that each
takes a turn at the last position. To compute all of the required polynomials in this
fashion would require O(N2k) time. However, we can improve this (for small k) to
O(N log(N)k2); to do so we will make use of a binary tree onN leaves. Each node of the
tree corresponds to a set of eigenvalues ofL; the leaves represent single eigenvalues, and an
interior node of the tree represents the set of eigenvalues corresponding to its descendant
leaves. (See Figure 5.1.) We will associate with each node the set of elementary symmetric
polynomials e1(Λ), e2(Λ), . . . , ek(Λ), where Λ is the set of eigenvalues represented by the
node.
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12345678
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Figure 5.1: Binary tree withN = 8 leaves; interior nodes represent their descendant leaves.
Removing a path from leaf n to the root leaves logN subtrees that can be combined to
compute e−n

k−1.

These polynomials can be computed directly for leaf nodes in constant time, and
the polynomials of an interior node can be computed given those of its children using a
simple recursion:

ek(Λ1 ∪ Λ2) =
k∑

l=0

el(Λ1)ek−l(Λ2) . (5.34)

Thus, we can compute the polynomials for the entire tree in O(N log(N)k2) time; this
is sufficient to obtain eNk at the root node.

However, if we now remove a leaf node corresponding to eigenvalue n, we invalidate
the polynomials along the path from the leaf to the root; see Figure 5.1. This leaves
logN disjoint subtrees which together represent all of the eigenvalues of L, leaving out
λn. We can now apply Equation (5.34) logN times to the roots of these trees in order to
obtain e−n

k−1 in O(log(N)k2) time. If we do this for each value of n, the total additional
time required is O(N log(N)k2).

The algorithm described above thus takes O(N log(N)k2) time to produce the neces-
sary elementary symmetric polynomials, which in turn allow us to compute all of the
singleton marginals. This is a dramatic improvement over applying Equation (5.25) to
each item separately.
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5.2.4 Conditioning

Suppose we want to condition a k-DPP on the inclusion of a particular set A. For
|A|+ |B| = k we have

Pk
L(Y = A ∪B|A ⊆ Y ) ∝ Pk

L(Y = A ∪B) (5.35)

∝ PL(Y = A ∪B) (5.36)

∝ PL(Y = A ∪B|A ⊆ Y ) (5.37)

∝ det(LA
B) . (5.38)

Thus the conditional k-DPP is a k − |A|-DPP whose kernel is the same as that of the
associated conditional DPP. The normalization constant is ZA

k−|A|. We can condition on
excluding A in the same manner.

5.2.5 Finding the mode

Unfortunately, although k-DPPs offer the efficient versions of DPP inference algorithms
presented above, finding themost likely set Y remains intractable. It is easy to see that the
reduction from Section 2.4.5 still applies, since the cardinality of the Y corresponding to
an exact 3-cover, if it exists, is known. In practice we can utilize greedy approximations,
like we did for standard DPPs in Section 4.2.1.

5.3 Experiments: image search

We demonstrate the use of k-DPPs on an image search task. The motivation is as follows.
Suppose that we run an image search engine, where our primary goal is to deliver the
most relevant possible images to our users. Unfortunately, the query strings those users
provide are often ambiguous. For instance, a user searching for “philadelphia” might be
looking for pictures of the city skyline, street-level shots of buildings, or perhaps iconic
sights like the Liberty Bell or the Love sculpture. Furthermore, even if we know the
user is looking for a skyline photograph, he or she might specifically want a daytime
or nighttime shot, a particular angle, and so on. In general, we cannot expect users
to provide enough information in a textual query to identify the best image with any
certainty.
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For this reason search engines typically provide a small array of results, and we argue
that, to maximize the probability of the user being happy with at least one image, the
results should be relevant to the query but also diverse with respect to one another. That
is, if we want to maximize the proportion of users searching “philadelphia” who are
satisfied by our response, each image we return should satisfy a large but distinct subset
of those users, thus maximizing our overall coverage. Since we want diverse results but
also require control over the number of results we provide, a k-DPP is a natural fit.

5.3.1 Learning setup

Of course, we do not actually run a search engine and do not have real users. Thus,
in order to be able to evaluate our model using real human feedback, we define the
task in a manner that allows us to obtain inexpensive human supervision via Amazon
Mechanical Turk. We do this by establishing a simple binary decision problem, where
the goal is to choose, given two possible sets of image search results, the set that is more
diverse. Formally, our labeled training data comprises comparative pairs of image sets
{(Y +

t , Y
−
t )}Tt=1, where set Y +

t is preferred over set Y −
t , |Y +

t | = |Y −
t | = k. We canmeasure

performance on this classification task using the zero-one loss, which is zero whenever
we choose the correct set from a given pair, and one otherwise.

As discussed in Section 4.3, traditional likelihood-based learning objectives for DPPs
are very unstable and difficult to optimize. Thus, for this task we propose instead a
simple method for learning a combination of k-DPPs that is convex and seems to work
well in practice. Given a set L1, L2, . . . , LD of “expert” kernel matrices, which are fixed
in advance, define the combination model

Pk
θ =

D∑
l=1

θlPk
Ll
, (5.39)

where
∑D

l=1 θl = 1. Note that this is a combination of distributions, rather than a
combination of kernels. We will learn θ to optimize a logistic loss measure on the binary
task:

min
θ

L(θ) =
T∑
t=1

log
(
1 + e

−γ
[
Pk
θ (Y

+
t )−Pk

θ (Y
−
t )

])
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Figure 5.2: The logistic loss function.

s.t.
D∑
l=1

θl = 1 , (5.40)

where γ is a hyperparameter that controls how aggressively we penalize mistakes. Intu-
itively, the idea is to find a combination of k-DPPs where the positive sets Y +

t receive
higher probability than the corresponding negative sets Y −

t . By using the logistic loss
(Figure 5.2), which acts like a smooth hinge loss, we focus on making fewer mistakes.

Because Equation (5.40) is convex in θ (it is the composition of the convex logistic loss
function with a linear function of θ), we can optimize it efficiently using projected gradi-
ent descent, where we alternate taking gradient steps and projecting on the constraint∑D

l=1 θl = 1. The gradient is given by

∇L =
T∑
t=1

eθ
>δt

1 + eθ>δt
δt , (5.41)

where δt is a vector with entries

δtl = −γ
[
Pk

Ll
(Y +

t )− Pk
Ll
(Y −

t )
]
. (5.42)

Projection onto the simplex is achieved using standard algorithms (Bertsekas, 1999).

5.3.2 Data

We create datasets for three broad image search categories, using 8–12 hand-selected
queries for each category. (See Table 5.1.) For each query, we retrieve the top 64 results
from Google Image Search, restricting the search to JPEG files that pass the strictest level
of Safe Search filtering. Of those 64 results, we eliminate any that are no longer available
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cars cities dogs
chrysler baltimore beagle
ford barcelona bernese
honda london blue heeler

mercedes los angeles cocker spaniel
mitsubishi miami collie
nissan new york city great dane
porsche paris labrador
toyota philadelphia pomeranian

san francisco poodle
shanghai pug
tokyo schnauzer
toronto shih tzu

Table 5.1: Queries used for data collection.

for download. On average this leaves us with 63.0 images per query, with a range of
59–64.

We then use the downloaded images to generate 960 training instances for each
category, spread evenly across the different queries. In order to compare k-DPPs directly
against baseline heuristicmethods that do notmodel probabilities of full sets, we generate
only instances where Y +

t and Y −
t differ by a single element. That is, the classification

problem is effectively to choose which of two candidate images i+t , iit is a less redundant
addition to a given partial result set Yt:

Y +
t = Yt ∪ {i+t } Y −

t = Yt ∪ {i−t } . (5.43)

In our experiments Yt contains five images, so k = |Y +
t | = |Y −

t | = 6. We sample partial
result sets using a k-DPP with a SIFT-based kernel (details below) to encourage diversity.
The candidates are then selected uniformly at random from the remaining images, except
for 10% of instances that are reserved for measuring the performance of our human
judges. For those instances, one of the candidates is a duplicate image chosen uniformly
at random from the partial result set, making it the obviously more redundant choice.
The other candidate is chosen as usual.

In order to decide which candidate actually results in the more diverse set, we collect
human diversity judgments using Amazon’s Mechanical Turk. Annotators are drawn
from the general pool of Turk workers, and are able to label as many instances as they
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Figure 5.3: Sample labeling instances from each search category. The five images on
the left form the partial result set, and the two candidates are shown on the right. The
candidate receiving the majority of annotator votes has a blue border.

wish. Annotators are paid $0.01 USD for each instance that they label. For practical
reasons, we present the images to the annotators at reduced scale; the larger dimension of
an image is always 250 pixels. The annotators are instructed to choose the candidate that
they feel is “less similar” to the images in the partial result set. We do not offer any specific
guidance on how to judge similarity, since dealing with uncertainty in human users is
central to the task. The candidate images are presented in random order. Figure 5.3
shows a sample instance from each category.

Overall, we find that workers choose the correct image for 80.8% of the calibration
instances (that is, they choose the one not belonging to the partial result set). This
suggests only moderate levels of noise due to misunderstanding, inattention or robot
workers. However, for non-calibration instances the task is inherently difficult and
subjective. To keep noise in check, we have each instance labeled by five independent
judges, and keep only those instances where four or more judges agree. In the end
this leaves us with 408–482 labeled instances per category, or about half of the original
instances.

5.3.3 Kernels

We define a set of 55 “expert” similarity kernels for the collected images, which form the
building blocks of our combination model and baseline methods. Each kernel Lf is the
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Gram matrix of some feature function f ; that is, Lf
ij = f(i) · f(j) for images i and j.

We therefore specify the kernels through the feature functions used to generate them.
All of our feature functions are normalized so that ‖f(i)‖2 = 1 for all i; this ensures
that no image is a priori more likely than any other. Implicitly, thinking in terms of
the decomposition in Section 3.1, we are assuming that all of the images in our set are
equally relevant in order to isolate the modeling of diversity. This assumption is at least
partly justified by the fact the our images come from actual Google searches, and are
thus presumably relevant to the query.

We use the following feature functions, which derive from standard image processing
and feature extraction methods:

• Color (2 variants): Each pixel is assigned a coordinate in three-dimensional Lab
color space. The colors are then sorted into axis-aligned bins, producing a his-
togram of either 8 or 64 dimensions.

• SIFT (2 variants): The images are processed with the vlfeat toolbox to obtain sets
of 128-dimensional SIFT descriptors (Lowe, 1999; Vedaldi and Fulkerson, 2008).
The descriptors for a given category are combined, subsampled to a set of 25,000,
and then clustered using k-means into either 256 or 512 clusters. The feature vector
for an image is the normalized histogram of the nearest clusters to the descriptors
in the image.

• GIST: The images are processed using code fromOliva and Torralba (2006) to yield
960-dimensional GIST feature vectors characterizing properties like “openness,”
“roughness,” “naturalness,” and so on.

In addition to the five feature functions described above, we include another five that
are identical but focus only on the center of the image, defined as the centered rectangle
with dimensions half those of the original image. This gives our first ten kernels. We
then create 45 pairwise combination kernels by concatenating every possible pair of the
10 basic feature vectors. This technique produces kernels that synthesize more than one
source of information, offering greater flexibility.

Finally, we augment our kernels by adding a constant hyperparameter ρ to each
entry. ρ acts a knob for controlling the overall preference for diversity; as ρ increases, all
images appear more similar, thus increasing repulsion. In our experiments, ρ is chosen
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independently for each method and each category to optimize performance on the
training set.

5.3.4 Methods

We test four different methods. Two use k-DPPs, and two are derived from Maximum
Marginal Relevance (MMR) (Carbonell and Goldstein, 1998). For each approach, we test
both the single best expert kernel on the training data, as well as a learned combination
of kernels. All methods were tuned separately for each of the three query categories.
On each run a random 25% of the labeled examples are reserved for testing, and the
remaining 75% form the training set used for setting hyperparameters and training.
Recall that Yt is the five-image partial result set for instance t, and let Ct = {i+t , i−t }
denote the set of two candidates images, where i+t is the candidate preferred by the
human judges.

Best k-DPP

Given a single kernel L, the k-DPP prediction is

kDPPt = argmax
i∈Ct

P6
L(Yt ∪ {i}) . (5.44)

We select the kernel with the best zero-one accuracy on the training set, and apply it to
the test set.

Mixture of k-DPPs

We apply our learning method to the full set of 55 kernels, optimizing Equation (5.40)
on the training set to obtain a 55-dimensional mixture vector θ. We set γ to minimize
the zero-one training loss. We then take the learned θ and apply it to making predictions
on the test set:

kDPPmixt = argmax
i∈Ct

55∑
l=1

θlP6
Ll
(Yt ∪ {i}) . (5.45)

Best MMR

Recall that MMR is a standard, heuristic technique for generating diverse sets of search
results. The idea is to build a set iteratively by adding on each round a result that
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maximizes a weighted combination of relevance (with respect to the query) and diversity,
measured as the maximum similarity to any of the previously selected results. (See
Section 4.2.1 for more details about MMR.) For our experiments, we assume relevance is
uniform; hence we merely need to decide which of the two candidates has the smaller
maximum similarity to the partial result set. Thus, for a given kernel L, the MMR
prediction is

MMRt = argmin
i∈Ct

[
max
j∈Yt

Lij

]
. (5.46)

As for the k-DPP, we select the single best kernel on the training set, and apply it to the
test set.

Mixture MMR

We can also attempt to learn a mixture of similarity kernels for MMR. We use the same
training approach as for k-DPPs, but replace the probability score P k

θ (Yy ∪ {i}) with the
negative cost

− cθ(Yt, i) = −max
j∈Yt

D∑
l=1

θl[Ll]ij , (5.47)

which is just the negative similarity of item i to the set Yt under the combined kernel
metric. Significantly, this substitution makes the optimization non-smooth and non-
convex, unlike the k-DPP optimization. In practice this means the global optimum is
not easily found. However even a local optimum may provide advantages over the single
best kernel. In our experiments we use the local optimum found by projected gradient
descent starting from the uniform kernel combination.

5.3.5 Results

Table 5.2 shows the mean zero-one accuracy of each method for each query category,
averaged over 100 random train/test splits. Statistical significance is computed by boot-
strapping. Regardless of whether we learn a mixture, k-DPPs outperform MMR on two
of the three categories, significant at 99% confidence. In all cases, the learned mixture of
k-DPPs achieves the best performance. Note that, because the decision being made for
each instance is binary, 50% is equivalent to random performance. Thus the numbers
in Table 5.2 suggest that this is a rather difficult task, a conclusion supported by the
rates of noise exhibited by the human judges. However, the changes in performance
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Best Best Mixture Mixture
Category MMR k-DPP MMR k-DPP
cars 55.95 57.98 59.59 64.58
cities 56.48 56.31 60.99 61.29
dogs 56.23 57.70 57.39 59.84

Table 5.2: Percentage of real-world image search examples judged the same way as the
majority of human annotators. Bold results are significantly higher than others in the
same row with 99% confidence.

color-8-center & sift-256 (0.13)
cars color-8-center & sift-512 (0.11)

color-8-center (0.07)
sift-512-center (0.85)

cities gist (0.08)
color-8-center & gist (0.03)

color-8-center (0.39)
dogs color-8-center & sift-512 (0.21)

color-8-center & sift-256 (0.20)

Table 5.3: Kernels receiving the highest average weights for each category (shown in
parentheses). Ampersands indicate kernels generated from pairs of feature functions.

due to learning and the use of k-DPPs are more obviously significant when measured as
improvements above this baseline level. For example, in the cars category our mixture
of k-DPPs performs 14.58 percentage points better than random, versus 9.59 points for
MMR with a mixture of kernels. Figure 5.4 shows some actual samples drawn using the
k-DPP sampling algorithm.

Table 5.3 shows, for the k-DPP mixture model, the kernels receiving the highest
weights for each search category (on average over 100 train/test splits). Combined-feature
kernels appear to be useful, and the three categories exhibit significant differences in
what annotators deem diverse, as we might expect.

We can also return to our original motivation and try to measure how well each
method “covers” the space of likely user intentions. Since we do not have access to real
users who are searching for the queries in our dataset, we instead simulate them by
imagining that each is looking for a particular target image drawn randomly from the
images in our collection. For instance, given the query “philadelphia” we might draw a
target image of the Love sculpture, and then evaluate each method on whether it selects
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k=2 k=4
“porsche”

k=2 k=4

“philadelphia”

k=2
k=4

“cocker spaniel”

Figure 5.4: Samples from the k-DPP mixture model.
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Single kernel Uniform MMR
Category (average) mixture mixture
cars 57.58 68.31 58.15
cities 59.00 64.76 62.32
dogs 57.78 62.12 57.86

Table 5.4: The percentage of virtual users whose desired image is more similar to the
k-DPP results than the MMR results. Above 50 indicates better k-DPP performance;
below 50 indicates better MMR performance. The results for the 55 individual expert
kernels are averaged in the first column.

an image of the Love sculpture, i.e., whether it satisfies that virtual user. More generally,
we will simply record the maximum similarity of any image in the result set to the target
image. We expect better methods to show higher similarity when averaged over a large
number of such users.

We consider only the mixture models here, since they perform best. For each virtual
user, we sample a ten-image result set YDPP using the mixture k-DPP, and select a second
ten-image result set YMMR using the mixture MMR. For MMR, the first image is selected
uniformly at random, since they are assumed to be uniformly relevant. Subsequent
selections are deterministic. Given a target image i drawn uniformly at random, we then
compute similarities

sDPP(i) = max
j∈YDPP

Lij sMMR(i) = max
j∈YMMR

Lij (5.48)

for a particular similarity kernel L. We report the fraction of the time that sDPP(i) >

sMMR(i); that is, the fraction of the time that our virtual user would be better served by
the k-DPP model. Because we have no gold standard kernel L for measuring similarity,
we try several possibilities, including all 55 expert kernels, a uniform combination of the
expert kernels, and the combination learned by MMR. (Note that the mixture k-DPP
does not learn a kernel combination, hence there is no corresponding mixture to try
here.) Table 5.4 shows the results, averaged across all of the virtual users (i.e., all the
images in our collection). Even when using the mixture learned to optimize MMR itself,
the k-DPP does a better job of covering the space of possible user intentions. All results
in Table 5.4 are significantly higher than 50% at 99% confidence.



6
Structured DPPs

We have seen in the preceding chapters that DPPs offer polynomial-time inference and
learning with respect to N , the number of items in the ground set Y . This is important
since DPPs model an exponential number of subsets Y ⊆ Y , so naive algorithms would
be intractable. And yet, we can imagine DPP applications for which even linear time is
too slow. For example, suppose that after modeling the positions of basketball players,
as proposed in the previous chapter, we wanted to take our analysis one step further. An
obvious extension is to realize that a player does not simply occupy a single position,
but instead moves around the court over time. Thus, we might want to model not just
diverse sets of positions on the court, but diverse sets of paths around the court during a
game. While we could reasonably discretize the possible court positions to a manageable
number M , the number of paths over, say, 100 time steps would be M100, making it
almost certainly impossible to enumerate them all, let alone build anM100×M100 kernel
matrix.

However, in this combinatorial setting we can take advantage of the fact that, even
though there are exponentially many paths, they are structured; that is, every path is

119



Chapter 6. Structured DPPs 120

built from a small number of the same basic components. This kind of structure has
frequently been exploited in machine learning, for example, to find the best translation
of a sentence, or to compute the marginals of a Markov random field. In such cases
structure allows us to factor computations over exponentially many possibilities in an
efficient way. And yet, the situation for structured DPPs is even worse: when the number
of items in Y is exponential, we are actually modeling a distribution over the doubly
exponential number of subsets of an exponential Y . If there are M100 possible paths,
there are 2M100 subsets of paths, and a DPP assigns a probability to every one. This poses
an extreme computational challenge.

In order to develop efficient structured DPPs (SDPPs), we will therefore need to
combine the dynamic programming techniques used for standard structured prediction
with the algorithms that make DPP inference efficient. We will show how this can
be done by applying the dual DPP representation introduced in Section 3.3, which
shares spectral properties with the kernel L but is manageable in size, and the use of
second-order message passing, where the usual sum-product or min-sum semiring is
replaced with a special structure that computes quadratic quantities over a factor graph
(Li and Eisner, 2009). In the end, we will demonstrate that it is possible to normalize
and sample from an SDPP in polynomial time.

Structured DPPs open up a large variety of new possibilities for applications; they
allow us to model diverse sets of essentially any structured object. For instance, we
could find not only the best translation but a diverse set of high-quality translations for
a sentence, perhaps to aid a human translator. Or, we could study the distinct proteins
coded by a gene under alternative RNA splicings, using the diversifying properties of
DPPs to cover the large space of possibilities with a small representative set. Later, we
will apply SDPPs to three real-world tasks: identifying multiple human poses in images,
where there are combinatorially many possible poses, and we assume that the poses are
diverse in that they tend not to overlap; identifying salient lines of research in a corpus
of computer science publications, where the structures are citation chains of important
papers, and we want to find a small number of chains that covers the major topic in the
corpus; and building threads from news text, where the goal is to extract from a large
corpus of articles the most significant news stories, and for each story present a sequence
of articles covering the major developments of that story through time.

We begin by defining SDPPs and stating the structural assumptions that are necessary
to make inference efficient; we then show how these assumptions give rise to polynomial-
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time algorithms using second order message passing. We discuss how sometimes even
these polynomial algorithms can be too slow in practice, but demonstrate that by ap-
plying the technique of random projection (Section 3.4) we can dramatically speed up
computation and reduce memory use while maintaining a close approximation to the
original model. Finally, we show how SDPPs can be applied to the experimental settings
described above, yielding improved results compared with a variety of standard and
heuristic baseline approaches.

6.1 Factorization

In Section 2.4 we saw that DPPs remain tractable on modern computers for N up to
around 10,000. This is no small feat, given that the number of subsets of 10,000 items is
roughly the number of particles in the observable universe to the 40th power. Of course,
this is not magic but simply a consequence of a certain type of structure; that is, we can
perform inference with DPPs because the probabilities of these subsets are expressed
as combinations of only a relatively small set of O(N2) parameters. In order to make
the jump now to ground sets Y that are exponentially large, we will need to make an
similar assumption about the structure of Y itself. Thus, a structured DPP (SDPP) is
a DPP in which the ground set Y is given implicitly by combinations of a set of parts.
For instance, the parts could be positions on the court, and an element of Y a sequence
of those positions. Or the parts could be rules of a context-free grammar, and then an
element of Y might be a complete parse of a sentence. This assumption of structure will
give us the algorithmic leverage we need to efficiently work with a distribution over a
doubly exponential number of possibilities.

Because elements ofY are now structures, wewill no longer think ofY = {1, 2, . . . , N};
instead, each element y ∈ Y is a structure given by a sequence of R parts (y1, y2, . . . , yR),
each of which takes a value from a finite set ofM possibilities. For example, if y is the
path of a basketball player, then R is the number of time steps at which the player’s
position is recorded, and yr is the player’s discretized position at time r. We will use yi

to denote the ith structure in Y under an arbitrary ordering; thus Y = {y1,y2, . . . ,yN},
where N =MR. The parts of yi are denoted yir.

An immediate challenge is that the kernel L, which has N2 entries, can no longer
be written down explicitly. We therefore define its entries using the quality/diversity
decomposition presented in Section 3.1. Recall that this decomposition gives the entries
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of L as follows:
Lij = q(yi)φ(yi)

>φ(yj)q(yj) , (6.1)

where q(yi) is a nonnegative measure of the quality of structure yi, and φ(yi) is a
D-dimensional vector of diversity features so that φ(yi)

>φ(yj) is a measure of the simi-
larity between structures yi and yj . We cannot afford to specify q and φ for every possible
structure, but we can use the assumption that structures are built from parts to define
a factorization, analogous to the factorization over cliques that gives rise to Markov
random fields.

Specifically, we assume the model decomposes over a set of factors F , where a factor
α ∈ F is a small subset of the parts of a structure. (Keeping the factors small will
ensure that the model is tractable.) We denote by yα the collection of parts of y that
are included in factor α; then the factorization assumption is that the quality score
decomposes multiplicatively over parts, and the diversity features decompose additively:

q(y) =
∏
α∈F

qα(yα) (6.2)

φ(y) =
∑
α∈F

φα(yα) . (6.3)

We argue that these are quite natural factorizations. For instance, in our player tracking
example we might have a positional factor for each time r, allowing the quality model to
prefer paths that go through certain high-traffic areas, and a transitional factor for each
pair of times (r − 1, r), allowing the quality model to enforce the smoothness of a path
over time. More generally, if the parts correspond to cliques in a graph, then the quality
scores can be given by a standard log-linear Markov random field (MRF), which defines
a multiplicative distribution over structures that give labelings of the graph. Thus, while
in Section 3.2 we compared DPPs and MRFs as alternative models for the same binary
labeling problems, SDPPs can also be seen as an extension to MRFs, allowing us to take
a model of individual structures and use it as a quality measure for modeling diverse sets
of structures.

Diversity features, on the other hand, decompose additively, so we can think of
them as global feature functions defined by summing local features, again as done in
standard structured prediction. For example, φr(yr) could track the coarse-level position
of a player at time r, so that paths passing through similar positions at similar times
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are less likely to co-occur. Note that, in contrast to the unstructured case, we do not
generally have ‖φ(y)‖ = 1, since there is no way to enforce such a constraint under the
factorization in Equation (6.3). Instead, we simply set the factor features φα(yα) to have
unit norm for all α and all possible values of yα. This slightly biases the model towards
structures that have the same (or similar) features at every factor, since such structures
maximize ‖φ‖. However, the effect of this bias seems to be minor in practice.

As for unstructured DPPs, the quality and diversity models combine to produce
balanced, high-quality, diverse results. However, in the structured case the contribution
of the diversity model can be especially significant due to the combinatorial nature of the
items in Y . For instance, imagine taking a particular high-quality path and perturbing it
slightly, say by shifting the position at each time step by a small random amount. This
process results in a new and distinct path, but is unlikely to have a significant effect on the
overall quality: the path remains smooth and goes through roughly the same positions.
Of course, this is not unique to the structured case; we can have similar high-quality
items in any DPP. What makes the problem especially serious here is that there is a
combinatorial number of such slightly perturbed paths; the introduction of structure
dramatically increases not only the number of items in Y , but also the number of subtle
variations that we might want to suppress. Furthermore, factored distributions over
structures are often very peaked due to the geometric combination of quality scores
across many factors, so variations of the most likely structure can be muchmore probable
than any real alternative. For these reasons independent samples from an MRF can often
look nearly identical; a sample from an SDPP, on the other hand, is much more likely to
contain a truly diverse set of structures.

6.1.1 Synthetic example: particle tracking

Before describing the technical details needed to make SDPPs computationally efficient,
we first develop some intuition by studying the results of the model as applied to a
synthetic motion tracking task, where the goal is to follow a collection of particles as
they travel in a one-dimensional space over time. This is essentially a simplified version
of our player tracking example, but with the motion restricted to a line. We will assume
that a path y has 50 parts, where each part yr ∈ {1, 2, . . . , 50} is the particle’s position at
time step r discretized into one of 50 locations. The total number of possible trajectories
in this setting is 5050, and we will be modeling 250

50 possible sets of trajectories. We
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define positional and transitional factors

F = {{r} | r = 1, 2, . . . , 50} ∪ {{r − 1, r} | r = 2, 3, . . . , 50} . (6.4)

While a real tracking problem would involve quality scores q(y) that depend on
some observations—for example, measurements over time from a set of physical sensors,
or perhaps a video feed from a basketball game—for simplicity we determine the quality
of a trajectory here using only its starting position and a measure of smoothness over
time. Specifically, we have

q(y) = q1(y1)
50∏
r=2

q(yr−1, yr) , (6.5)

where the initial quality score q1(y1) is given by a smooth trimodal function with a
primary mode at position 25 and secondary modes at positions 10 and 40, depicted by
the blue curves on the left side of Figure 6.1, and the quality scores for all other positional
factors are fixed to one and have no effect. The transition quality is the same at all time
steps, and given by q(yr−1, yr) = fN (yr−1 − yr), where fN is the density function of the
normal distribution; that is, the quality of a transition is maximized when the particle
does not change location, and decreases as the particle moves further and further from
its previous location. In essence, high quality paths start near the central position and
move smoothly through time.

We want trajectories to be considered similar if they travel through similar positions,
so we define a 50-dimensional diversity feature vector as follows:

φ(y) =
50∑
r=1

φr(yr) (6.6)

φrl(yr) ∝ fN (l − yr), l = 1, 2, . . . , 50 . (6.7)

Intuitively, feature l is activated when the trajectory passes near position l, so trajectories
passing through nearby positions will activate the same features and thus appear similar
in the diversity model. Note that for simplicity, the time at which a particle reaches
a given position has no effect on the diversity features. The diversity features for the
transitional factors are zero and have no effect.

We use the quality and diversity models specified above to define our SDPP. In
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Figure 6.1: Sets of particle trajectories sampled from an SDPP (top row) and indepen-
dently using only quality scores (bottom row). The curves to the left indicate quality
scores for the initial positions of the particles.

order to obtain good results for visualization, we scale the kernel so that the expected
number of trajectories in a sample from the SDPP is five. We then apply the algorithms
developed later to draw samples from the model. The first row of Figure 6.1 shows the
results, and for comparison each corresponding panel on the second row shows an equal
number of trajectories sampled independently, with probabilities proportional to their
quality scores. As evident from the figure, trajectories sampled independently tend to
cluster in the middle region due to the strong preference for this starting position. The
SDPP samples, however, are more diverse, tending to cover more of the space while still
respecting the quality scores—they are still smooth, and still tend to start near the center.

6.2 Second-order message passing

The central computational challenge for SDPPs is the fact that N =MR is exponentially
large, making the usual inference algorithms intractable. We showed in Section 3.3 how
DPP inference can be recast in terms of a smaller dual representation C; however, for
this to be of any use here we must be able to efficiently compute C for an arbitrary SDPP.
We next describe the second-order message passing algorithm that makes this possible.
Afterwards, we will show how the ability to compute C and related quantities leads to
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polynomial-time algorithms for SDPP inference.
Second-order message passing was first introduced by Li and Eisner (2009). The main

idea is to compute second-order statistics over a graphical model by using the standard
belief propagation message passing algorithm, but with a special semiring in place of the
usual sum-product or max-product. This substitution will make it possible to compute
quantities of the form

∑
y∈Y

(∏
α∈F

pα(yα)

)(∑
α∈F

aα(yα)

)(∑
α∈F

bα(yα)

)
, (6.8)

where pα are nonnegative and aα and bα are arbitrary functions. Note that we can think
of pα as defining a multiplicatively decomposed function

p(y) =
∏
α∈F

pα(yα) , (6.9)

and aα and bα as defining corresponding additively decomposed functions a and b.
Equation (6.8) will apply directly to computing the dual representationC (see Section 3.3)
for an SDPP.

We begin by defining the notion of a factor graph, which provides the structure for
all message passing algorithms. We then describe standard belief propagation on factor
graphs, and show how it can be defined in a general way using semirings. Finally we
demonstrate that belief propagation using the semiring proposed by Li and Eisner (2009)
computes quantities of the form in Equation (6.8).

6.2.1 Factor graphs

Message passing operates on factor graphs. A factor graph is an undirected bipartite graph
with two types of vertices: variable nodes and factor nodes. Variable nodes correspond to
the parts of the structure being modeled; for the SDPP setup described above, a factor
graph contains R variable nodes, each associated to a distinct part r. Similarly, each
factor node corresponds to a distinct factor α ∈ F . Every edge in the graph connects a
variable node to a factor node, and an edge exists between variable node r and factor
node α if and only if r ∈ α. Thus, the factor graph encodes the relationships between
parts and factors. Figure 6.2 shows an example factor graph for the tracking problem
from Section 6.1.1.
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y1 y2 y3 · · · yR

Figure 6.2: A sample factor graph for the tracking problem. Variable nodes are circular,
and factor nodes are square. Positional factors that depend only on a single part appear
in the top row; binary transitional factors appear between parts in the second row.

It is obvious that the computation of Equation (6.8) cannot be efficient when factors
are allowed to be arbitrary, since in the limit a factor could contain all parts and we
could assign arbitrary values to every configuration y. Thus we will assume that the
degree of the factor nodes is bounded by a constant c. (In Figure 6.2, as well as all of
the experiments we run, we have c = 2.) Furthermore, message passing algorithms are
efficient whenever the factor graph has low treewidth, or, roughly, when only small sets
of nodes need to be merged to obtain a tree. Going forward we will assume that the
factor graph is a tree, since any low-treewidth factor graph can be converted into an
equivalent factor tree with bounded factors using the junction tree algorithm (Lauritzen
and Spiegelhalter, 1988).

6.2.2 Belief propagation

We now describe the basic belief propagation algorithm, first introduced by Pearl (1982).
Suppose each factor has an associated real-valued weight function wα(yα), giving rise to
the multiplicatively decomposed global weight function

w(y) =
∏
α∈F

wα(yα) . (6.10)

Then the goal of belief propagation is to efficiently compute sums of w(y) over combi-
natorially large sets of structures y.

We will refer to a structure y as an assignment to the variable nodes of the factor graph,
since it defines a value yr for every part. Likewise we can think of yα as an assignment
to the variable nodes adjacent to α, and yr as an assignment to a single variable node r.
We use the notation yα ∼ yr to indicate that yα is consistent with yr, in the sense that it
assigns the same value to variable node r. Finally, denote by F (r) the set of factors in
which variable r participates.
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The belief propagation algorithm defines recursive message functionsm to be passed
along edges of the factor graph; the formula for the message depends on whether it is
traveling from a variable node to a factor node, or vice versa:

• From a variable r to a factor α:

mr→α(yr) =
∏

α′∈F (r)−{α}

mα′→r(yr) (6.11)

• From a factor α to a variable r:

mα→r(yr) =
∑

yα∼yr

wα(yα)
∏

r′∈α−{r}

mr′→α(yr′)

 (6.12)

Intuitively, an outgoing message summarizes all of the messages arriving at the source
node, excluding the one coming from the target node. Messages from factor nodes
additionally incorporate information about the local weight function.

Belief propagation passes these messages in two phases based on an arbitrary orienta-
tion of the factor tree. In the first phase, called the forward pass, messages are passed
upwards from the leaves to the root. In the second phase, or backward pass, the messages
are passed downward, from the root to the leaves. Upon completion of the second phase
one message has been passed in each direction along every edge in the factor graph, and
it is possible to prove using an inductive argument that, for every yr,∏

α∈F (r)

mα→r(yr) =
∑
y∼yr

∏
α∈F

wα(yα) . (6.13)

If we think of thewα as potential functions, then Equation (6.13) gives the (unnormalized)
marginal probability of the assignment yr under a Markov random field.

Note that the algorithm passes two messages per edge in the factor graph, and each
message requires considering at most M c assignments, therefore its running time is
O(M cR). The sum on the right-hand side of Equation (6.13), however, is exponential in
the number of parts. Thus belief propagation offers an efficient means of computing
certain combinatorial quantities that would naively require exponential time.
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6.2.3 Semirings

In fact, the belief propagation algorithm can be easily generalized to operate over an
arbitrary semiring, thus allowing the same basic algorithm to perform a variety of
useful computations. Recall that a semiring 〈W,⊕,⊗,0,1〉 comprises a set of elements
W , an addition operator ⊕, a multiplication operator ⊗, an additive identity 0, and a
multiplicative identity 1 satisfying the following requirements for all a, b, c ∈ W :

• Addition is associative and commutative, with identity 0:

a⊕ (b⊕ c) = (a⊕ b)⊕ c (6.14)

a⊕ b = b⊕ a (6.15)

a⊕ 0 = a (6.16)

• Multiplication is associative, with identity 1:

a⊗ (b⊗ c) = (a⊗ b)⊗ c (6.17)

a⊗ 1 = 1⊗ a = a (6.18)

• Multiplication distributes over addition:

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) (6.19)

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) (6.20)

• 0 is absorbing under multiplication:

a⊗ 0 = 0⊗ a = 0 (6.21)

Obviously these requirements are met whenW = R and multiplication and addition
are the usual arithmetic operations; this is the standard sum-product semiring. We also
have, for example, the max-product semiring, whereW = [0,∞), addition is given by
the maximum operator with identity element 0, and multiplication is as before.
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We can rewrite the messages defined by belief propagation in terms of these more
general operations. For wα(yα) ∈ W , we have

mr→α(yr) =
⊗

α′∈F (r)−{α}

mα′→r(yr) (6.22)

mα→r(yr) =
⊕
yα∼yr

wα(yα)⊗
⊗

r′∈α−{r}

mr′→α(yr′)

 . (6.23)

As before, we can pass messages forward and then backward through the factor tree.
Because the properties of semirings are sufficient to preserve the inductive argument, we
then have the following analog of Equation (6.13):⊗

α∈F (r)

mα→r(yr) =
⊕
y∼yr

⊗
α∈F

wα(yα) . (6.24)

We have seen that Equation (6.24) computes marginal probabilities under the sum-
product semiring, but other semirings give rise to useful results as well. Under the
max-product semiring, for instance, Equation (6.24) is the so-called max-marginal—the
maximum unnormalized probability of any single assignment y consistent with yr. In
the next section we take this one step further, and show how a carefully designed semiring
will allow us to sum second-order quantities across exponentially many structures y.

6.2.4 Second-order semiring

Li and Eisner (2009) proposed the following second-order semiring over four-tuples
(q, φ, ψ, c) ∈ W = R4:

(q1, φ1, ψ1, c1)⊕ (q2, φ2, ψ2, c2) = (q1 + q2, φ1 + φ2, ψ1 + ψ2, c1 + c2) (6.25)

(q1, φ1, ψ1, c1)⊗ (q2, φ2, ψ2, c2) = (q1q2, q1φ2 + q2φ1, q1ψ2 + q2ψ1,

q1c2 + q2c1 + φ1ψ2 + φ2ψ1) (6.26)

0 = (0, 0, 0, 0) (6.27)

1 = (1, 0, 0, 0) (6.28)
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It is easy to verify that the semiring properties hold for these operations. Now, suppose
that the weight function for a factor α is given by

wα(yα) = (pα(yα), pα(yα)aα(yα), pα(yα)bα(yα), pα(yα)aα(yα)bα(yα)) , (6.29)

where pα, aα, and bα are as before. Then wα(yα) ∈ W , and we can get some intuition
about the multiplication operator by observing that the fourth component of wα(yα)⊗
wα′(yα′) is

pα(yα) [pα′(yα′)aα′(yα′)bα′(yα′)] + pα′(yα′) [pα(yα)aα(yα)bα(yα)]

+ [pα(yα)aα(yα)] [pα′(yα′)bα′(yα′)] + [pα′(yα′)aα′(yα′)] [pα(yα)bα(yα)]

(6.30)

= pα(yα)pα′(yα′) [aα(yα) + aα′(yα′)] [bα(yα) + bα′(yα′)] . (6.31)

In other words, multiplication in the second-order semiring combines the values of
pmultiplicatively and the values of a and b additively, leaving the result in the fourth
component. It is not hard to extend this argument inductively and show that the fourth
component of

⊗
α∈F wα(yα) is given in general by(∏

α∈F

pα(yα)

)(∑
α∈F

aα(yα)

)(∑
α∈F

bα(yα)

)
. (6.32)

Thus, by Equation (6.24) and the definition of ⊕, belief propagation with the second-
order semiring yields messages that satisfy ⊗

α∈F (r)

mα→r(yr)


4

=
∑
y∼yr

(∏
α∈F

pα(yα)

)(∑
α∈F

aα(yα)

)(∑
α∈F

bα(yα)

)
. (6.33)

Note that multiplication and addition remain constant-time operations in the second-
order semiring, thus belief propagation can still be performed in time linear in the
number of factors. In the following section we will show that the dual representation
C, as well as related quantities needed to perform inference in SDPPs, takes the form
of Equation (6.33); thus second-order message passing will be an important tool for
efficient SDPP inference.
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6.3 Inference

The factorization proposed in Equation (6.3) gives a concise definition of a structured
DPP for an exponentially large Y ; remarkably, under suitable conditions it also gives rise
to tractable algorithms for normalizing the SDPP, computing marginals, and sampling.
The only restrictions necessary for efficiency are the ones we inherit from belief propa-
gation: the factors must of bounded size so that we can enumerate all of their possible
configurations, and together they must form a low-treewidth graph on the parts of the
structure. These are precisely the same conditions needed for efficient graphical model
inference (Koller and Friedman, 2009), which is generalized by inference in SDPPs.

6.3.1 Computing C

As we saw in Section 3.3, the dual representation C is sufficient to normalize and
marginalize an SDPP in time constant in N . However, for this equivalence to be of any
use, we must be able to compute C for an arbitrary SDPP. As a first attempt, we can write

C = BB> (6.34)

=
∑
y∈Y

q2(y)φ(y)φ(y)> . (6.35)

If we think of q2α(yα) as the factor potentials of a graphical model p(y) ∝
∏

α∈F q
2
α(yα),

then computing C is equivalent to computing second moments of the diversity features
under p (up to normalization). Since the diversity features factor additively,C is quadratic
in the local diversity features φα(yα). Thus, we could naively calculate C by computing
the pairwise marginals p(yα,yα′) for all realizations of the factors α, α′ and, by linearity
of expectations, adding up their contributions:

C ∝
∑
α,α′

∑
yα,yα′

p(yα,yα′)φα(yα)φα′(yα′)> , (6.36)

where the proportionality is due to the normalizing constant of p(y). However, this sum
is quadratic in the number of factors and their possible realizations, and can therefore
be expensive when structures are large.

Instead, we can substitute the factorization from Equation (6.3) into Equation (6.35)
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to obtain

C =
∑
y∈Y

(∏
α∈F

q2α(yα)

)(∑
α∈F

φα(yα)

)(∑
α∈F

φα(yα)

)>

. (6.37)

This sum appears daunting, but we can recognize its form from Equation (6.33)—it is
precisely the type of expression computable using second-order message passing in linear
time. Specifically, we can compute for each pair of diversity features (a, b) the value of

∑
y∈Y

(∏
α∈F

q2α(yα)

)(∑
α∈F

φαa(yα)

)(∑
α∈F

φαb(yα)

)
(6.38)

by summing Equation (6.33) over the possible assignments yr, and then simply assemble
the results into the matrix C. Since there are D(D+1)

2
unique entries in C and message

passing runs in time O(M cR), computing C in this fashion requires O(D2M cR) time.
We can make several practical optimizations to this algorithm, though they will not

affect the asymptotic performance. First, we note that the full set of messages at any
variable node r is sufficient to compute Equation (6.38). Thus, during message passing
we need only perform the forward pass; at that point, the messages at the root node
are complete and we can obtain the quantity we need. This speeds up the algorithm
by a factor of two. Second, rather than running message passing D2 times, we can
run it only once using a vectorized second-order semiring. This has no effect on the
total number of operations, but can result in significantly faster performance due to
vector optimizations in modern processors. The vectorized second-order semiring is over
four-tuples (q, φ, ψ, C) where q ∈ R, φ, ψ ∈ RD, and C ∈ RD×D, and uses the following
operations:

(q1, φ1, ψ1, C1)⊕ (q2, φ2, ψ2, C2) = (q1 + q2, φ1 + φ2, ψ1 + ψ2, C1 + C2) (6.39)

(q1, φ1, ψ1, C1)⊗ (q2, φ2, ψ2, C2) = (q1q2, q1φ2 + q2φ1, q1ψ2 + q2ψ1,

q1C2 + q2C1 + φ1ψ
>
2 + φ2ψ

>
1 ) (6.40)

0 = (0,0,0,0) (6.41)

1 = (1,0,0,0) . (6.42)

It is easy to verify that computations in this vectorized semiring are identical to those
obtained by repeated use of the scalar semiring.

Given C, we can now normalize and compute marginals for an SDPP using the
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formulas in Section 3.3; for instance

Kii =
D∑

n=1

λn
λn + 1

(
1√
λn
B>

i v̂n

)2

(6.43)

= q2(yi)
D∑

n=1

1

λn + 1
(φ(yi)

>v̂n)
2 , (6.44)

where C =
∑D

n=1 λnv̂nv̂
>
n is an eigendecomposition of C.

Part marginals

The introduction of structure offers an alternative type of marginal probability, this
time not of structures y ∈ Y but of single part assignments. More precisely, we can ask
how many of the structures in a sample from the SDPP can be expected to make the
assignment ŷr to part r:

µr(ŷr) = E

[∑
y∈Y

I(y ∈ Y ∧ yr = ŷr)

]
(6.45)

=
∑
y∼ŷr

PL(y ∈ Y ) . (6.46)

The sum is exponential, but we can compute it efficiently using second-order message
passing. We apply Equation (6.44) to get

∑
y∼ŷr

PL(y ∈ Y ) =
∑
y∼ŷr

q2(y)
D∑

n=1

1

λn + 1
(φ(y)>v̂n)

2 (6.47)

=
D∑

n=1

1

λn + 1

∑
y∼ŷr

q2(y)(φ(y)>v̂n)
2 (6.48)

=
D∑

n=1

1

λn + 1

∑
y∼ŷr

(∏
α∈F

q2α(yα)

)(∑
α∈F

φα(yα)
>v̂n

)2

. (6.49)

The result is a sum of D terms, each of which takes the form of Equation (6.33), and
therefore is efficiently computable by message passing. The desired part marginal proba-
bility simply requires D separate applications of belief propagation, one per eigenvector
v̂n, for a total runtime of O(D2M cR). (It is also possible to vectorize this computation
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and use a single run of belief propagation.) Note that if we require the marginal for only
a single part µr(ŷr), we can run just the forward pass if we root the factor tree at part
node r. However, by running both passes we obtain everything we need to compute
the part marginals for any r and ŷr; the asymptotic time required to compute all part
marginals is the same as the time required to compute just one.

6.3.2 Sampling

While the dual representation provides useful algorithms for normalization andmarginals,
the dual sampling algorithm is linear in N ; for SDPPs, this is too slow to be useful.
In order to make SDPP sampling practical, we need to be able to efficiently choose a
structure yi according to the distribution

Pr(yi) =
1

|V̂ |

∑
v̂∈V̂

(v̂>Bi)
2 (6.50)

in the first line of the while loop in Algorithm 3. We can use the definition of B to
obtain

Pr(yi) =
1

|V̂ |

∑
v̂∈V̂

q2(yi)(v̂
>φ(yi))

2 (6.51)

=
1

|V̂ |

∑
v̂∈V̂

(∏
α∈F

q2α(yiα)

)(∑
α∈F

v̂>φα(yiα)

)2

. (6.52)

Thus, the desired distribution has the familiar form of Equation (6.33). For instance, the
marginal probability of part r taking the assignment ŷr is given by

1

|V̂ |

∑
v̂∈V̂

∑
y∼ŷr

(∏
α∈F

q2α(yα)

)(∑
α∈F

v̂>φα(yα)

)2

, (6.53)

which we can compute with k = |V̂ | runs of belief propagation (or a single vectorized
run), taking only O(DM cRk) time. More generally, the message-passing computation
of these marginals offers an efficient algorithm for sampling individual full structures
yi. We will first show a naive method based on iterated computation of conditional
marginals, and then use it to derive amore efficient algorithm by integrating the sampling
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of parts into the message-passing process.

Single structure sampling

Returning to the factor graph used for belief propagation (see Section 6.2.1), we can force
a part r′ to take a certain assignment yr′ by adding a new singleton factor containing
only r′, and setting its weight function to 1 for yr′ and 0 otherwise. (In practice, we
do not need to actually create a new factor; we can simply set outgoing messages from
variable r′ to 0 for all but the desired assignment yr′ .) It is easy to see that Equation (6.24)
becomes ⊗

α∈F (r)

mα→r(yr) =
⊕

y∼yr,yr′

⊗
α∈F

wα(yα) , (6.54)

where the sum is now doubly constrained, since any assignment y that is not consistent
with yr′ introduces a 0 into the product. If

⊗
α∈F wα(yα) gives rise to a probability mea-

sure over structures y, then Equation (6.54) can be seen as the unnormalized conditional
marginal probability of the assignment yr given yr′ . For example, using the second-order
semiring with p = q2 and a = b = v̂>φ, we have ⊗

α∈F (r)

mα→r(yr)


4

=
∑

y∼yr,yr′

(∏
α∈F

q2α(yα)

)(∑
α∈F

v̂>φα(yα)

)2

. (6.55)

Summing these values for all v̂ ∈ V̂ and normalizing the result yields the conditional
distribution of yr given fixed assignment yr′ under Equation (6.52). Going forward
we will assume for simplicity that V̂ contains a single vector v̂; however, the general
case is easily handled by maintaining |V̂ | messages in parallel, or by vectorizing the
computation.

The observation that we can compute conditional probabilities with certain assign-
ments held fixed gives rise to a naive algorithm for sampling a structure according to
Pr(yi) in Equation (6.52), shown in Algorithm 9. While polynomial, Algorithm 9 re-
quires running belief propagation R times, which might be prohibitively expensive for
large structures. We can do better by weaving the sampling steps into a single run of
belief propagation. We discuss first how this can be done for linear factor graphs, where
the intuition is simpler, and then extend it to general factor trees.
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Algorithm 9 Sampling a structure (naive)
Input: factored q and φ, v̂
S ← ∅
for r = 1, 2, . . . , R do

Run second-order belief propagation with:
• p = q2

• a = b = v̂>φ
• assignments in S held fixed

Sample yr according to Pr(yr|S) ∝
[⊗

α∈F (r)mα→r(yr)
]
4

S ← S ∪ {yr}
end for
Output: y constructed from S

Linear graphs

Suppose that the factor graph is a linear chain arranged from left to right. Each node in
the graph has at most two neighbors—one to the left, and one to the right. Assume the
belief propagation forward pass proceeds from left to right, and the backward pass from
right to left. To send a message to the right, a node needs only to receive its message
from the left. Conversely, to send a message to the left, only the message from the right
is needed. Thus, the forward and backward passes can be performed independently.

Consider now the execution of Algorithm 9 on this factor graph. Assume the variable
nodes are numbered in decreasing order from left to right, so the variable sampled in
the first iteration is the rightmost variable node. Observe that on iteration r, we do
not actually need to run belief propagation to completion; we need only the messages
incoming to variable node r, since those suffice to compute the (conditional) marginals
for part r. To obtain those messages, we must compute all of the forward messages sent
from the left of variable r, and the backward messages from the right. Call this set of
messages m(r).

Note that m(1) is just a full, unconstrained forward pass, which can be computed
in time O(DM cR). Now compare m(r) to m(r − 1). Between iteration r − 1 and r,
the only change to S is that variable r − 1, to the right of variable r, has been assigned.
Therefore the forward messages in m(r), which come from the left, do not need to be
recomputed, as they are a subset of the forward messages in m(r − 1). Likewise, the
backward messages sent from the right of variable r − 1 are unchanged, so they do not
need to be recomputed. The only new messages in m(r) are those backward messages
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m(r − 1):

m(r):

· · · yr+1 yr yr−1 · · ·

· · · yr+1 yr yr−1 · · ·

* *

Figure 6.3: Messages on a linear chain. Only the starred messages need to be computed
to obtain m(r) from m(r − 1). The double circle indicates that assignment yr−1 has
been fixed for computing m(r).

traveling from r − 1 to r. These can be computed, using m(r − 1) and the sampled
assignment yr−1, in constant time. See Figure 6.3 for an illustration of this process.

Thus, rather than restarting belief propagation on each loop of Algorithm 9, we have
shown that we need only compute a small number of additional messages. In essence
we have threaded the sampling of parts r into the backward pass. After completing
the forward pass, we sample y1; we then compute the backward messages from y1 to
y2, sample y2, and so on. When the backward pass is complete, we sample the final
assignment yR and are finished. Since the initial forward pass takes O(DM cR) time and
each of the O(R) subsequent iterations takes at most O(DM c) time, we can sample from
Pr(yi) over a linear graph in O(DM cR) time.

Trees

The algorithm described above for linear graphs can be generalized to arbitrary factor
trees. For standard graphical model sampling using the sum-product semiring, the
generalization is straightforward—we can simply pass messages up to the root and then
sample on the backward pass from the root to the leaves. However, for arbitrary semirings
this is algorithm is incorrect, since an assignment to one node can affect the messages
arriving at its siblings even when the parent’s assignment is fixed.

Letmb→a(·|S) be the message function sent from node b to node a during a run of
belief propagation where the assignments in S have been held fixed. Imagine that we
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Ta(b)

a

d

... ...

b

c1 c2

mb→a(·|S)

Figure 6.4: Notation for factor trees, includingmb→a(·|S) and Ta(b) when a is a (square)
factor node and b is a (round) variable node. The same definitions apply when a is a
variable and b is a factor.

re-root the factor tree with a as the root; then define Ta(b) to be the subtree rooted at b
(see Figure 6.4). Several useful observations follow.

Lemma 6.1. If b1 and b2 are distinct neighbors of a, then Ta(b1) and Ta(b2) are disjoint.

Proof. The claim is immediate, since the underlying graph is a tree.

Lemma 6.2. mb→a(·|S) can be computed given only the messagesmc→b(·|S) for all neighbors
c 6= a of b and either the weight function wb (if b is a factor node) or the assignment to b in S
(if b is a variable node and such an assignment exists).

Proof. Follows from the message definitions in Equations (6.22) and (6.23).

Lemma 6.3. mb→a(·|S) depends only on the assignments in S that give values to variables in
Ta(b).

Proof. If b is a leaf (that is, its only neighbor is a), the lemma holds trivially. If b is not
a leaf, then assume inductively that incoming messagesmc→b(·|S), c 6= a, depend only
on assignments to variables in Tb(c). By Lemma 6.2, the message mb→a(·|S) depends
only on those messages and (possibly) the assignment to b in S. Since b and Tb(c) are
subgraphs of Ta(b), the claim follows.

To sample a structure, we begin by initializing S0 = ∅ and setting messages m̂b→a =

mb→a(·|S0) for all neighbor pairs (a, b). This can be done in O(DM cR) time via belief
propagation.
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Now we walk the graph, sampling assignments and updating the current messages
m̂b→a as we go. Step t from node b to a proceeds in three parts as follows:

1. Check whether b is a variable node without an assignment in St−1. If so, sample an
assignment yb using the current incoming messages m̂c→b, and set St = St−1∪{yb}.
Otherwise set St = St−1.

2. Recompute and update m̂b→a using the current messages and Equations (6.22)
and (6.23), taking into account any assignment to b in St.

3. Advance to node a.

This simple algorithm has the following useful invariant.

Theorem 6.1. Following step t from b to a, for every neighbor d of a we have

m̂d→a = md→a(·|St) . (6.56)

Proof. By design, the theorem holds at the outset of the walk. Suppose inductively that
the claim is true for steps 1, 2, . . . , t− 1. Let t′ be the most recent step prior to t at which
we visited a, or 0 if step t was our first visit to a. Since the graph is a tree, we know
that between steps t′ and t the walk remained entirely within Ta(b). Hence the only
assignments in St − St′ are to variables in Ta(b). As a result, for all neighbors d 6= b of
a we have m̂d→a = md→a(·|St′) = md→a(·|St) by the inductive hypothesis, Lemma 6.1,
and Lemma 6.3.

It remains to show that m̂b→a = mb→a(·|Si). For all neighbors c 6= a of b, we know
that m̂c→b = mc→b(·|Si−1) = mc→b(·|St) due to the inductive hypothesis and Lemma 6.3
(since b is not in Tb(c)). By Lemma 6.2, then, we have m̂b→a = mb→a(·|St).

Theorem 6.1 guarantees that whenever we sample an assignment for the current variable
node in the first part of step t, we sample from the conditional marginal distribution
Pr(yb|St−1). Therefore, we can sample a complete structure from the distribution Pr(y)
if we walk the entire tree. This can be done, for example, by starting at the root and
proceeding in depth-first order. Such a walk takes O(R) steps, and each step requires
computing only a single message. Thus, allowing now for k = |V̂ | > 1, we can sample
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Algorithm 10 Sampling a structure
Input: factored q and φ, v̂
S ← ∅
Initialize m̂a→b using second-order belief propagation with p = q2, a = b = v̂>φ
Let a1, a2, . . . , aT be a traversal of the factor tree
for t = 1, 2, . . . , T do

if at is a variable node r with no assignment in S then
Sample yr according to Pr(yr) ∝

[⊗
α∈F (r) m̂α→r(yr)

]
4

S ← S ∪ {yr}
end if
if t < T then

Update m̂at→at+1 using Equations (6.22) and (6.23), fixing assignments in S
end if

end for
Output: y constructed from S

a structure in time O(DM cRk), a significant improvement over Algorithm 9. The
procedure is summarized in Algorithm 10.

Algorithm 10 is the final piece of machinery needed to replicate the DPP sampling
algorithm using the dual representation. The full SDPP sampling process is given
in Algorithm 11 and runs in time O(D2k3 + DM cRk2), where k is the number of
eigenvectors selected in the first loop. As in standard DPP sampling, the asymptotically
most expensive operation is the orthonormalization; here we require O(D2) time to
compute each of the O(k2) dot products.

6.4 Experiments: pose estimation

To demonstrate that SDPPs effectively model characteristics of real-world data, we apply
them to a multiple-person pose estimation task. Our input will be a still image depicting
multiple people, and our goal is to simultaneously identify the poses—the positions
of the torsos, heads, and left and right arms—of all the people in the image. A pose
y is therefore a structure with four parts, in this case literally body parts. To form a
complete structure, each part r is assigned a position/orientation pair yr. Our quality
model will be based on “part detectors” trained to estimate the likelihood of a particular
body part at a particular location and orientation; thus we will focus on identifying
poses that correspond well to the image itself. Our similarity model, on the other hand,
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Algorithm 11 Sampling from an SDPP
Input: eigendecomposition {(v̂n, λn)}Dn=1 of C
J ← ∅
for n = 1, 2, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1

end for
V̂ ←

{
v̂n√

v̂>
nCv̂n

}
n∈J

Y ← ∅
while |V̂ | > 0 do

Select yi from Y with Pr(yi) =
1

|V̂ |

∑
v̂∈V̂ ((B

>v̂)>ei)
2 (Algorithm 10)

Y ← Y ∪ yi

V̂ ← V̂⊥, where {B>v̂ | v̂ ∈ V̂⊥} is an orthonormal basis for the subspace of V
orthogonal to ei

end while
Output: Y

will focus on the location of a pose within the image. Since the part detectors often have
uncertainty about the precise location of a part, there may be many variations of a single
pose that outscore the poses of all the other, less detectable people. An independent
model would thus be likely to choose many similar poses. By encouraging the model to
choose a spatially diverse set of poses, we hope to improve the chance that the model
predicts a single pose for each person.

Our dataset consists of 73 still frames taken from various TV shows, each approxi-
mately 720 by 540 pixels in size (Sapp et al., 2010)3. As much as possible, the selected
frames contain three or more people at similar scale, all facing the camera and without
serious occlusions. Sample images from the dataset are shown in Figure 6.6. Each person
in each image is annotated by hand; each of the four parts (head, torso, right arm, and
left arm) is labeled with the pixel location of a reference point (e.g., the shoulder) and
an orientation selected from among 24 discretized angles.

6.4.1 Factorized model

There are approximately 75,000 possible values for each part, so there are about 75, 0004

possible poses, and thus we cannot reasonably use a standard DPP for this problem.
Instead, we build a factorized SDPP. Our factors are given by the standard pictorial

3The images and code were obtained from http://www.vision.grasp.upenn.edu/video
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structure model (Felzenszwalb and Huttenlocher, 2005; Fischler and Elschlager, 1973),
treating each pose as a two-level tree with the torso as the root and the head and arms as
leaves. Each node (body part) has a singleton factor, and each edge has a corresponding
pairwise factor.

Our quality function derives from the model proposed by Sapp et al. (2010), and is
given by

q(y) = γ

 R∏
r=1

qr(yr)
∏

(r,r′)∈E

qr,r′(yr, yr′)

β

, (6.57)

where E is the set of edges in the part tree, γ is a scale parameter that will control
the expected number of poses in an SDPP sample, and β is a sharpness parameter that
controls the dynamic range of the quality scores. We set the values of the hyperparameters
γ and β using a held-out training set, as discussed below. The per-part quality scores
qr(yr) are provided by the customized part detectors trained by Sapp et al. (2010) on
similar images; they assign a value to every proposed location and orientation yr of part
r. The pairwise quality scores qr,r′(yr, yr′) are defined according to a Gaussian “spring”
that encourages, for example, the left arm to begin near the left shoulder of the torso.
Full details of the model are provided in Sapp et al. (2010).

In order to encourage the model not to choose overlapping poses, our diversity
features reflect the locations of the constituent parts:

φ(y) =
R∑

r=1

φr(yr) , (6.58)

where each φr(yr) ∈ R32. There are no diversity features on the edge factors. The local
features are based on a 8× 4 grid of reference points x1, x2, . . . , x32 spaced evenly across
the image; the lth feature is

φrl(yr) ∝ fN

(
dist(yr, xl)

σ

)
. (6.59)

Here fN is again the standard normal density function, and dist(yr, xl) is the Euclidean
distance between the position of part r (ignoring orientation) and the reference point
xl. Poses that occupy the same part of the image will be near the same reference points,
and thus their feature vectors φ will be more closely aligned. The parameter σ controls
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the width of the kernel; larger values of σ make poses at a given distance appear more
similar We set σ on a held-out training set.

6.4.2 Methods

We compare samples from the SDPP defined above to those from two baseline methods.
The first, which we call the independent model, draws poses independently according
to the distribution obtained by normalizing the quality scores, which is essentially the
graphical model used by Sapp et al. (2010). For this model the number of poses to be
sampled must be supplied by the user, so to create a level playing field we choose the
number of poses in an SDPP sample Y . Since this approach does not incorporate a
notion of diversity (or any correlations between selected poses whatsoever), we expect
that we will frequently see multiple poses that correspond to the same person.

The second baseline is a simple non-maximum suppression model (Canny, 1986),
which incorporates a heuristic for encouraging diversity. The first pose is drawn from
the normalized quality model in the same manner as for the independent method. Sub-
sequent poses, however, are constrained so that they cannot overlap with the previously
selected poses, but otherwise drawn according to the quality model. We consider poses
overlapping if they cover any of the same pixels when rendered. Again, the number of
poses must be provided as an argument, so we use the number of poses from a sample
of the SDPP. While the non-max approach can no longer generate multiple poses in the
same location, it achieves this using a hard, heuristic constraint. Thus, we might expect
to perform poorly when multiple people actually do overlap in the image, for example
if one stands behind the other.

The SDPP, on the other hand, generates samples that prefer, but do not require poses
to be spatially diverse. That is, strong visual information in the image can override our
prior assumptions about the separation of distinct poses. We split our data randomly
into a training set of 13 images and a test set of 60 images. Using the training set, we
select values for γ, β, and σ that optimize overall F1 score at radius 100 (see below),
as well as distinct optimal values of β for the baselines. (γ and σ are irrelevant for the
baselines.) We then use each model to sample 10 sets of poses for each test image, for a
total of 600 samples per model.
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Figure 6.5: Results for pose estimation. The horizontal axis gives the acceptance radius
used to determine whether two parts are successfully matched. 95% confidence intervals
are shown. (a) Overall F1 scores. (b) Arm F1 scores. (c) Overall precision/recall curves
(recall is identified by circles).

6.4.3 Results

For each sample from each of the three testedmethods, we computemeasures of precision
and recall as well as an F1 score. In our tests, precision is measured as the fraction of
predicted parts for which both endpoints are within a given radius of the endpoints of
an expert-labeled part of the same type (head, left arm, and so on). We report results
across a range of radii. Correspondingly, recall is the fraction of expert-labeled parts
with endpoints within a given radius of a predicted part of the same type. Since the
SDPP model encourages diversity, we expect to see improvements in recall at the expense
of precision, compared to the independent model. F1 score is the harmonic mean of
precision and recall. We compute all metrics separately for each sample, and then average
the results across samples and images in the test set.

The results are shown in Figure 6.5a. At tight tolerances, when the radius of ac-
ceptance is small, the SDPP performs comparably to the independent and non-max
samples, perhaps because the quality scores are simply unreliable at this resolution, thus
diversity has little effect. As the radius increases, however, the SDPP obtains better
results, significantly outperforming both baselines. Figure 6.5b shows the curves for just
the arm parts, which tend to be more difficult to locate accurately and exhibit greater
variance in orientation. Figure 6.5c shows the precision/recall obtained by each model.
As expected, the SDPP model achieves its improved F1 score by increasing recall at the
cost of precision.
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For illustration, we show the SDPP sampling process for some sample images from
the test set in Figure 6.6. The SDPP part marginals are visualized as a “cloud”, where
brighter colors correspond to higher probability. From left to right, we can see how the
marginals change as poses are selected during the main loop of Algorithm 11. As we saw
for simple synthetic examples in Figure 2.5a, the SDPP discounts but does not entirely
preclude poses that are similar to those already selected.

6.5 Random projections for SDPPs

It is quite remarkable that we can perform polynomial-time inference for SDPPs given
their extreme combinatorial nature. Even so, in some cases the algorithms presented
in Section 6.3 may not be fast enough. Eigendecomposing the dual representation C,
for instance, requires O(D3) time, while normalization, marginalization, and sampling,
even when an eigendecomposition has been precomputed, scale quadratically inD, both
in terms of time and memory. In practice, this limits us to relatively low-dimensional
diversity features φ; for example, in our pose estimation experiments we built φ from
a fairly coarse grid of 32 points mainly for reasons of efficiency. As we move to textual
data, this will become an even bigger problem, since there is no natural low-dimensional
analog for feature vectors based on, say, word occurrences. In the following sectionwewill
see data where natural vectors φ have dimension D ≈ 30,000; without dimensionality
reduction, storing even a single belief propagation message would require over 200
terabytes of memory.

To address this problem, we will make use of the random projection technique de-
scribed in Section 3.4, reducing the dimension of the diversity features without sacrificing
the accuracy of the model. Because Theorem 3.1 depends on a cardinality condition, we
will focus on k-SDPPs. As described in Chapter 5, a k-DPP is simply a DPP conditioned
on the cardinality of the modeled subset Y :

Pk(Y ) =

(∏
y∈Y q

2(y)
)
det(φ(Y )>φ(Y ))∑

|Y ′|=k

(∏
y∈Y ′ q2(y)

)
det(φ(Y ′)>φ(Y ′))

, (6.60)

where φ(Y ) denotes the D × |Y |matrix formed from columns φ(y) for y ∈ Y . When q
and φ factor over parts of a structure, as in Section 6.1, we will refer to this distribution
as a k-SDPP. We note in passing that the algorithms for normalization and sampling in
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Figure 6.6: Structured marginals for the pose estimation task, visualized as clouds, on
successive steps of the sampling algorithm. Already selected poses are superimposed.
Input images are shown on the left.
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Chapter 5 apply equally well to k-SDPPs, since they depend mainly on the eigenvalues
of L, which we can obtain from C.

Recall that Theorem 3.1 requires projection dimension

d = O(max{k/ε, (log(1/δ) + logN)/ε2}) . (6.61)

In the structured setting, N =MR, thus dmust be logarithmic in the number of labels
and linear in the number of parts. Under this condition, we have, with probability at
least 1− δ,

‖Pk − P̃k‖1 ≤ e6kε − 1 , (6.62)

where P̃k(Y ) is the projected k-SDPP.

6.5.1 Toy example: geographical paths

In order to empirically study the effects of random projections, we test them on a simple
toy application where D is small enough that the exact model is tractable. The goal is to
identify diverse, high-quality sets of travel routes between U.S. cities, where diversity is
with respect to geographical location, and quality is optimized by short paths visiting
the most populous or most touristy cities. Such sets of paths could be used, for example,
by a politician to plan campaign routes, or by a traveler organizing a series of vacations.

We model the problem as a k-SDPP over path structures having R = 4 parts, where
each part is a stop along the path and can take any ofM = 200 city values. The quality
and diversity functions are factored, with a singleton factor for every individual stop and
pairwise factors for consecutive pairs of stops. The quality of a singleton factor is based
on the Google hit count for the assigned city, so that paths stopping in popular cities are
preferred. The quality of a pair of consecutive stops is based on the distance between the
assigned cities, so that short paths are preferred. In order to disallow paths that travel
back and forth between the same cities, we augment the stop assignments to include
arrival direction, and assign a quality score of zero to paths that return in the direction
from which they came. The diversity features are only defined on the singleton factors;
for a given city assignment yr, φr(yr) is just the vector of inverse distances between yr
and all of the 200 cities. As a result, paths passing through the same or nearby cities
appear similar, and the model prefers paths that travel through different regions of the
country. We have D = 200.



Chapter 6. Structured DPPs 149

Figure 6.7: Each column shows two samples drawn from a k-SDPP; from left to right,
k = 2, 3, 4. Circle size corresponds to city quality.

Figure 6.7 shows sets of paths sampled from the k-SDPP for various values of k. For
k = 2, the model tends to choose one path along the east coast and another along the
west coast. As k increases, a variety of configurations emerge; however, they continue to
emphasize popular cities and the different paths remain geographically diverse.

We can now investigate the effects of random projections on this model. Figure 6.8
shows the L1 variational distance between the original model and the projected model
(estimated by sampling), as well as the memory required to sample a set of paths for a
variety of projection dimensions d. As predicted by Theorem 3.1, only a relatively small
number of projection dimensions are needed to obtain a close approximation to the
original model. Past d ≈ 25, the rate of improvement due to increased dimension falls
off dramatically; meanwhile, the required memory and running time start to become
significant. Figure 6.8 suggests that aggressive use of random projections, like those we
employ in the following section, is not only theoretically but empirically justified.

6.6 Experiments: threading graphs

In this section we put together many of the techniques introduced in this thesis in order
to complete a novel task that we refer to as graph threading. The goal is to extract from a
large directed graph a set of diverse, salient threads, or singly-connected chains of nodes.
Depending on the construction of the graph, such threads can have various semantics.
For example, given a corpus of academic literature, high-quality threads in the citation



Chapter 6. Structured DPPs 150

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

L1
 v

ar
ia

tio
na

l d
is

ta
nc

e

Projection dimension

0

1

2

3

4
x 108

M
em

or
y 

us
e 

(b
yt

es
)

Figure 6.8: The effect of random projections. In black, on the left, we estimate the L1

variational distance between the original and projected models. In blue, on the right,
we plot the memory required for sampling, which is also proportional to running time.

graph might correspond to chronological chains of important papers, each building on
the work of the last. Thus, graph threading could be used to identify a set of significant
lines of research. Or, given a collection of news articles from a certain time period, where
each article is a node connected to previous, related articles, we might want to display the
most significant news stories from that period, and for each story provide a thread that
contains a timeline of its major events. We experiment on data from these two domains
in the following sections. Other possibilities might include discovering trends on social
media sites, for example, where users can post image or video responses to each other,
or mining blog entries for important conversations through trackback links. Figure 6.9
gives an overview of the graph threading task for document collections.

Generally speaking, graph threading offers a means of gleaning insights from collec-
tions of interrelated objects—for instance, people, documents, images, events, locations,
and so on—that are too large and noisy for manual examination. In contrast to tools
like search, which require the user to specify a query based on prior knowledge, a set
of threads provides an immediate, concise, high-level summary of the collection, not
just identifying a set of important objects but also conveying the relationships between
them. As the availability of such datasets continues to grow, this kind of automated
analysis will be key in helping us to efficiently and effectively navigate and understand
the information they contain.
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Figure 6.9: An illustration of graph threading applied to a document collection. We
first build a graph from the collection, using measures of importance and relatedness to
weight nodes (documents) and build edges (relationships). Then, from this graph, we
extract a diverse, salient set of threads to represent the collection.

6.6.1 Related work

Research from to the Topic Detection and Tracking (TDT) program (Wayne, 2000) has
led to useful methods for tasks like link detection, topic detection, and topic tracking
that can be seen as subroutines for graph threading on text collections. Graph threading
with k-SDPPs, however, addresses these tasks jointly, using a global probabilistic model
with a tractable inference algorithm.

Other work in the topic tracking literature has addressed related tasks (Mei and Zhai,
2005; Blei and Lafferty, 2006; Leskovec et al., 2009). In particular, Blei and Lafferty (2006)
proposed dynamic topic models (DTMs), which, given a division of text documents
into time slices, attempt to fit a generative model where topics evolve over time, and
documents are drawn from the topics available at the time slice during which they were
published. The evolving topics found by a DTM can be seen as threads of a sort, but in
contrast to graph threading they are not composed of actual items in the dataset (in this
case, documents). In Section 6.6.4 we will return to this distinction when we compare
k-SDPP threading to a DTM baseline.

The information retrieval community has produced other methods for extracting
temporal information from document collections. Swan and Jensen (2000) proposed a
system for finding temporally clustered named entities in news text and presenting them
on a timeline. Allan et al. (2001) introduced the task of temporal summarization, which
takes as input a stream of news articles related to a particular topic, and then seeks to
extract sentences describing important events as they occur. Yan et al. (2011) evaluated
methods for choosing sentences from temporally clustered documents that are relevant
to a query. In contrast, graph threading seeks not to extract grouped entities or sentences,
but instead to organize a subset of the objects (documents) themselves into threads, with
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topic identification as a side effect.
Some prior work has also focused more directly on threading. Shahaf and Guestrin

(2010) and Chieu and Lee (2004) proposed methods for selecting individual threads,
while Shahaf et al. (2012) recently proposed metro maps as alternative structured repre-
sentations of related news stories. Metro maps are effectively sets of non-chronological
threads that are encouraged to intersect and, in doing so, generate a map of events and
topics. However, these approaches assume some prior knowledge about content. Shahaf
and Guestrin (2010), for example, assume the thread endpoints are specified, and Chieu
and Lee (2004) require a set of query words. Likewise, because they build metro maps
individually, Shahaf et al. (2012) implicitly assume that the collection is filtered to a
single topic, perhaps from a user query. These inputs make it possible to quickly pare
down the document graph. In contrast, we will apply graph threading to very large
graphs, and consider all possible threads.

6.6.2 Setup

In order to be as useful as possible, the threads we extract from a data graph need to
be both high quality, reflecting the most important parts of the collection, and diverse,
so that they cover distinct aspects of the data. In addition, we would like to be able to
directly control both the length and the number of threads that we return, since different
contexts might necessitate different settings. Finally, to be practical our method must be
efficient in both time and memory use. To achieve these various goals, we will model
the graph threading problem as a k-SDPP with random projections.

Given a directed graph on M vertices with edge set E and a real-valued weight
function w(·) on nodes and edges, define the weight of a thread y = (y1, y2, . . . , yR),

(yr, yr+1) ∈ E by

w(y) =
R∑

r=1

w(yr) +
R∑

r=2

w(yr−1, yr) . (6.63)

We can use w to define a simple log-linear quality model for our k-SDPP:

q(y) = exp(βw(y)) (6.64)

=

(
R∏

r=1

exp(w(yr))
R∏

r=2

exp(w(yr−1, yr))

)β

, (6.65)
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where β is a hyperparameter controlling the dynamic range of the quality scores. We fix
the value of β on a validation set in our experiments.

Likewise, let φ be a feature function from nodes in the graph toRD; then the diversity
feature function on threads is

φ(y) =
R∑

r=1

φ(yr) . (6.66)

In some cases it might also be convenient to have diversity features on edges of the graph
as well as nodes. If so, they can be accommodated without much difficulty; however, for
simplicity we proceed with the setup above.

We assume that R, k, and the projection dimension d are provided; the first two
depend on application context, and the third, as discussed in Section 6.5, is a tradeoff
between computational efficiency and faithfulness to the original model. To generate
diverse thread samples, we first project the diversity features φ by a random d×D matrix
G whose entries are drawn independently and identically from N (0, 1

d
). We then apply

second-order message passing to compute the dual representation C, as in Section 6.3.1.
After eigendecomposing C, which is only d× d due to the projection, we can run the
first phase of the k-DPP sampling algorithm from Section 5.2.2 to choose a set V̂ of
eigenvectors, and finally complete the SDPP sampling algorithm in Section 6.3.2 to
obtain a set of k threads Y . We now apply this model to two datasets; one is a citation
graph of computer science papers, and the other is a large corpus of news text.

6.6.3 Academic citation data

The Cora dataset comprises a large collection of approximately 200,000 academic papers
on computer science topics, including citation information (McCallum et al., 2000). We
construct a directed graph with papers as nodes and citations as edges, and then remove
papers with missing metadata or zero outgoing citations, leaving us with 28,155 papers.
The average out-degree is 3.26 citations per paper, and 0.011% of the total possible edges
are present in the graph.

To obtain useful threads, we set edge weights to reflect the degree of textual similarity
between the citing and the cited paper, and node weights to correspond with ameasure of
paper “importance”. Specifically, the weight of edge (a, b) is given by the cosine similarity
metric, which for two documents a and b is the dot product of their normalized tf-idf
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vectors, as defined in Section 4.2.1:

cos-sim(a, b) =

∑
w∈W tfa(w)tfb(w)idf2(w)√∑

w∈W tf2a(w)idf
2(w)

√∑
w∈W tf2b(w)idf

2(w)
, (6.67)

Here W is a subset of the words found in the documents. We select W by filtering
according to document frequency; that is, we remove words that are too common,
appearing in more than 10% of papers, or too rare, appearing in only one paper. After
filtering, there are 50,912 unique words.

The node weights are given by the LexRank score of each paper (Erkan and Radev,
2004). The LexRank score is the stationary distribution of the thresholded, binarized,
row-normalized matrix of cosine similarities, plus a damping term, which we fix to 0.15.
LexRank is a measure of centrality, so papers that are closely related to many other papers
will receive a higher score.

Finally, we design the diversity feature function φ to encourage topical diversity. Here
we apply cosine similarity again, representing a document by the 1,000 documents
to which it is most similar. This results in binary φ of dimension D = M = 28, 155

with exactly 1,000 non-zeros; φl(yr) = 1 implies that l is one of the 1,000 most similar
documents to yr. Correspondingly, the dot product between the diversity features of two
documents is proportional to the fraction of top-1,000 documents they have in common.
In order to make k-SDPP inference efficient, we project φ down to d = 50 dimensions.

Figure 6.10 illustrates the behavior of the model when we set k = 4 and R = 5. Sam-
ples from the model, like the one presented in the figure, offer not only some immediate
intuition about the types of papers contained in the collection, but, upon examining
individual threads, provide a succinct illustration of the content and development of
each area. Furthermore, the sampled threads cover distinct topics, standing apart visually
in Figure 6.10 and exhibiting diverse salient terms.

6.6.4 News articles

Our news dataset comprises over 200,000 articles from the New York Times, collected
from 2005-2007 as part of the English Gigaword corpus (Graff and Cieri, 2009). We split
the articles into six groups, with six months’ worth of articles in each group. Because
the corpus contains a significant amount of noise in the form of articles that are short
snippets, lists of numbers, and so on, we filter the results by discarding articles more than
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partially uncertainty

learning lifelong
 training tasks

 invariances control

Thread: learning lifelong training tasks invariances control

1. Locally Weighted Learning for Control
2. Discovering Structure in Multiple Learning Tasks: The TC Algorithm
3. Learning One More Thing
4. Explanation Based Learning for Mobile Robot Perception
5. Learning Analytically and Inductively

Thread: mobile clients hoard server client database

1. A Database Architecture for Handling Mobile Clients
2. An Architecture for Mobile Databases
3. Database Server Organization for Handling Mobile Clients
4. Mobile Wireless Computing: Solutions and Challenges in Data Management
5. Energy Efficient Query Optimization

Figure 6.10: Sampled threads from a 4-SDPP with thread length R = 5 on the Cora
dataset. Above, we plot a subset of the Cora papers, projecting their tf-idf vectors to two
dimensions by running PCA on the centroids of the threads, and then highlight the
thread selections in color. Displayed beside each thread are the words in the thread with
highest tf-idf score. Below, we show the titles of the papers in two of the threads.
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two standard deviations longer than the mean article, articles less than 400 words, and
articles whose fraction of non-alphabetic words is more than two standard deviations
above the mean. On average, for each six-month period we are left with 34,504 articles.

For each time period, we generate a graph with articles as nodes. As for the citations
dataset, we use cosine similarity to define edge weights. The subset of wordsW used
to compute cosine similarity contains all words that appear in at least 20 articles and
at most 15% of the articles. Across the six time periods, this results in an average of
36,356 unique words. We include in our graph only those edges with cosine similarity
of at least 0.1; furthermore, we require that edges go forward in time to enforce the
chronological ordering of threads. The resulting graphs have an average of 0.32% of the
total possible edges, and an average degree of 107. As before, we use LexRank for node
weights, and the top-1000 similar documents to define a binary feature function φ. We
add a constant feature ρ to φ, which controls the overall degree of repulsion; large values
of ρmake all documents more similar to one another. We set ρ and the quality model
hyperparameters to maximize a cosine similarity evaluation metric (see Section 6.6.4),
using the data from the first half of 2005 as a development set. Finally, we randomly
project the diversity features from D ≈ 34, 500 to d = 50 dimensions. For all of the
following experiments, we use k = 10 and R = 8. All evaluation metrics we report are
averaged over 100 random samples from the model.

Graph visualizations

In order to convey the scale and content of the graphs built from news data, we provide
some high-resolution renderings. Figure 6.11 shows the graph neighborhood of a single
article node from our development set. Each node represents an article and is annotated
with the corresponding headline; the size of each node reflects its weight, as does the
thickness of an edge. The horizontal position of a node corresponds to the time at which
the article was published, from left to right; the vertical positions are optimized for
readability. In the digital version of this thesis, Figure 6.11 can be zoomed in order to
read the headlines; in hardcopy, however, it is likely to be illegible. As an alternative, an
online, zoomable version of the figure is available at http://zoom.it/GUCR.

Visualizing the entire graph is quite challenging since it contains tens of thousands
of nodes and millions of edges; placing such a figure in the thesis would be impractical
since the computational demands of rendering it and the zooming depth required to

http://zoom.it/GUCR
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SENATE APPROVES $81.26 BILLION IN A MILITARY EMERGENCY BILLSENATE APPROVES $81.26 BILLION IN A MILITARY EMERGENCY BILL

IMMIGRATION CONTROL ADVOCATES DESCEND ON CAPITOL HILLIMMIGRATION CONTROL ADVOCATES DESCEND ON CAPITOL HILL

POLICE REPORT NONCITIZENS TO U.S., OFFICIAL SAYSPOLICE REPORT NONCITIZENS TO U.S., OFFICIAL SAYS

BRITISH ELECTION DEBATE SPOTLIGHTS CONCERN ABOUT IMMIGRATIONBRITISH ELECTION DEBATE SPOTLIGHTS CONCERN ABOUT IMMIGRATION

TOP DOGS! GYM DOGS TAKE TITLETOP DOGS! GYM DOGS TAKE TITLE

ILLEGAL IMMIGRATION FOES DEMANDING ACTIONILLEGAL IMMIGRATION FOES DEMANDING ACTION

SIERRA CLUB STANDS PAT ON IMMIGRATION POLICYSIERRA CLUB STANDS PAT ON IMMIGRATION POLICY

KOSOVAR FEARS ID PROPOSAL WILL JEOPARDIZE SAFE LIFE IN U.S.KOSOVAR FEARS ID PROPOSAL WILL JEOPARDIZE SAFE LIFE IN U.S.

A MISTAKEN ID LAW (FOR USEA MISTAKEN ID LAW (FOR USE

TRAFFICKING LEADS LATINO SUMMIT AGENDATRAFFICKING LEADS LATINO SUMMIT AGENDA

IMMIGRATION-SCAM-HNSIMMIGRATION-SCAM-HNS

LATINO KIDS LAG IN HEALTH COVERAGELATINO KIDS LAG IN HEALTH COVERAGE

LAWMAKERS TO DECIDE FATE OF DRIVER'S LICENSE IMMIGRATION BILLLAWMAKERS TO DECIDE FATE OF DRIVER'S LICENSE IMMIGRATION BILL

WHITE HOUSE BACKS LEGISLATION THAT WOULD TOUGHEN IMMIGRATION RULESWHITE HOUSE BACKS LEGISLATION THAT WOULD TOUGHEN IMMIGRATION RULES

IN RARE ACCORD, SPURNED ASYLUM SEEKER TO GET $87,500IN RARE ACCORD, SPURNED ASYLUM SEEKER TO GET $87,500

COMMENTARY: A PRIVATE OBSESSIONCOMMENTARY: A PRIVATE OBSESSION

EX-VALLEY MAN IN VANGUARD OF MINUTEMAN PROJECTEX-VALLEY MAN IN VANGUARD OF MINUTEMAN PROJECT

SCHWARZENEGGER ENDORSES ARMED VOLUNTEERS ON BORDERSCHWARZENEGGER ENDORSES ARMED VOLUNTEERS ON BORDER

GOVERNOR SIGNALS HE'D WELCOME MINUTEMEN ON CALIFORNIA BORDERGOVERNOR SIGNALS HE'D WELCOME MINUTEMEN ON CALIFORNIA BORDER

VALLEY HOSPITAL BOOM UNDER WAYVALLEY HOSPITAL BOOM UNDER WAY

ACTIVISTS, OPPONENTS CLASH AT IMMIGRATION RALLYACTIVISTS, OPPONENTS CLASH AT IMMIGRATION RALLY

MEXICAN SENATOR WANTS TO BLOCK WOULD-BE ILLEGAL IMMIGRANTS FROM ENTERING U.S.MEXICAN SENATOR WANTS TO BLOCK WOULD-BE ILLEGAL IMMIGRANTS FROM ENTERING U.S.

MAYANS HERE TRY TO SAVE OLD WAYSMAYANS HERE TRY TO SAVE OLD WAYS

STATE OFFICIALS WARY OF NEW DRIVER'S LICENSE REQUIREMENTSSTATE OFFICIALS WARY OF NEW DRIVER'S LICENSE REQUIREMENTS

EDITORIAL: AN UNREALISTIC 'REAL ID'EDITORIAL: AN UNREALISTIC 'REAL ID'

ROUTINE LICENSE CHECK CAN MEAN JAIL AND DEPORTATIONROUTINE LICENSE CHECK CAN MEAN JAIL AND DEPORTATION

HOUSE PASSES EMERGENCY SPENDING BILLHOUSE PASSES EMERGENCY SPENDING BILL

BILL WOULD PROTECT ILLEGAL IMMIGRANT DRIVERS' CARS FROM IMPOUNDBILL WOULD PROTECT ILLEGAL IMMIGRANT DRIVERS' CARS FROM IMPOUND

HOUSE OKS $82 BILLION MORE FOR WARSHOUSE OKS $82 BILLION MORE FOR WARS

IMMIGRANTS IN TENNESSEE ISSUED CERTIFICATES TO DRIVE ARIEL HART CONTRIBUTED REPORTING FOR THIS ARTICLE FROM ATLANTA.IMMIGRANTS IN TENNESSEE ISSUED CERTIFICATES TO DRIVE ARIEL HART CONTRIBUTED REPORTING FOR THIS ARTICLE FROM ATLANTA.

PAYMENTS TO HELP HOSPITALS CARE FOR ILLEGAL IMMIGRANTSPAYMENTS TO HELP HOSPITALS CARE FOR ILLEGAL IMMIGRANTS

IMMIGRANTS' PLIGHT BECOMES A RALLYING CRY AMONG LATINO, U.S. MUSICIANSIMMIGRANTS' PLIGHT BECOMES A RALLYING CRY AMONG LATINO, U.S. MUSICIANS

CATHOLIC GROUPS LAUNCH IMMIGRATION REFORM CAMPAIGNCATHOLIC GROUPS LAUNCH IMMIGRATION REFORM CAMPAIGN

BORDER STATES COMPLAIN THAT U.S. ISN'T FOOTING THE BILL FOR JAILING ILLEGAL IMMIGRANTSBORDER STATES COMPLAIN THAT U.S. ISN'T FOOTING THE BILL FOR JAILING ILLEGAL IMMIGRANTS

NATIONAL CHILDREN'S STUDY STARVING FOR FUNDS, BACKERS SAYNATIONAL CHILDREN'S STUDY STARVING FOR FUNDS, BACKERS SAY

SENATE APPROVES MONEY FOR IRAQ WAR; RESTRICTS DRIVER'S LICENSES FOR ILLEGAL IMMIGRANTSSENATE APPROVES MONEY FOR IRAQ WAR; RESTRICTS DRIVER'S LICENSES FOR ILLEGAL IMMIGRANTS

IMMIGRANTS ENCOURAGED TO RIDE BUSIMMIGRANTS ENCOURAGED TO RIDE BUS

IMMIGRATION-CRACKDOWN-HNSIMMIGRATION-CRACKDOWN-HNS

SENATE UNANIMOUSLY OKS WAR FUNDING AND DRIVERS LICENSE RESTRICTIONS FOR IMMIGRANTSSENATE UNANIMOUSLY OKS WAR FUNDING AND DRIVERS LICENSE RESTRICTIONS FOR IMMIGRANTS

DENIAL OF DRIVER'S LICENSES TO MANY IMMIGRANTS VOIDED IN NEW YORKDENIAL OF DRIVER'S LICENSES TO MANY IMMIGRANTS VOIDED IN NEW YORK

MINUTEMEN-IMMIGRANTS-HNSMINUTEMEN-IMMIGRANTS-HNS

MAJOR IMMIGRATION REFORM MEASURE TO BE INTRODUCEDMAJOR IMMIGRATION REFORM MEASURE TO BE INTRODUCED

GARCIA MAY HAVE CRASHED, BUT HE'S NOT BURNED UPGARCIA MAY HAVE CRASHED, BUT HE'S NOT BURNED UP

BILL WOULD ALLOW ILLEGAL IMMIGRANTS TO BECOME LEGAL TEMPORARY WORKERSBILL WOULD ALLOW ILLEGAL IMMIGRANTS TO BECOME LEGAL TEMPORARY WORKERS

MCCAIN, KENNEDY BILL WOULD PUT MILLIONS OF ILLEGALS ON PATH TO GREEN CARDMCCAIN, KENNEDY BILL WOULD PUT MILLIONS OF ILLEGALS ON PATH TO GREEN CARD

KENNEDY, MCCAIN BILL ADDRESSES IMMIGRANTSKENNEDY, MCCAIN BILL ADDRESSES IMMIGRANTS

IMMIGRATION-REFORM-HNSIMMIGRATION-REFORM-HNS

IMMIGRANT LABOR BILL CREATES 3-YEAR VISAS FOR GUEST WORKERSIMMIGRANT LABOR BILL CREATES 3-YEAR VISAS FOR GUEST WORKERS

U.S. OFFICIALS, AFRICAN AMERICAN LEADERS SEEK APOLOGY OVER MEXICAN PRESIDENT'S REMARKSU.S. OFFICIALS, AFRICAN AMERICAN LEADERS SEEK APOLOGY OVER MEXICAN PRESIDENT'S REMARKS

SMUGGLING OF IMMIGRANTS IS DETAILED AS TRIAL STARTSSMUGGLING OF IMMIGRANTS IS DETAILED AS TRIAL STARTS

FOX MEETS JACKSON SEEKING TO EASE UPROAR OVER REMARKSFOX MEETS JACKSON SEEKING TO EASE UPROAR OVER REMARKS

EDITORIAL: MAJOR IMMIGRATION SURGERYEDITORIAL: MAJOR IMMIGRATION SURGERY

N.H. POLICE CHIEF'S TACTICS STIR A STORM ON IMMIGRATIONN.H. POLICE CHIEF'S TACTICS STIR A STORM ON IMMIGRATION

NH-IMMIGRATION-ART-BOSNH-IMMIGRATION-ART-BOS

POST-9/11 PROGRAM MAY END FAMILY'S AMERICAN DREAMPOST-9/11 PROGRAM MAY END FAMILY'S AMERICAN DREAM

STRESSFUL LIVES BURDEN REFUGEESSTRESSFUL LIVES BURDEN REFUGEES

ECUADORANS LEAD DANBURY IMMIGRATION PROTEST RALLYECUADORANS LEAD DANBURY IMMIGRATION PROTEST RALLY

EARLY HEAT WAVE KILLS 12 ILLEGAL IMMIGRANTS IN THE ARIZONA DESERTEARLY HEAT WAVE KILLS 12 ILLEGAL IMMIGRANTS IN THE ARIZONA DESERT

FEDERAL RESERVE PROGRAM GIVES BANKS A SHOT AT TRANSFERS TO MEXICOFEDERAL RESERVE PROGRAM GIVES BANKS A SHOT AT TRANSFERS TO MEXICO

BILL WOULD FORCE SAVINGS ON MEDICAID SPENDINGBILL WOULD FORCE SAVINGS ON MEDICAID SPENDING

BILL BY GOP SENATORS INCREASES BORDER GUARDS; NEW SECURITY IS PART OF AN OVERALL IMMIGRATION PLANBILL BY GOP SENATORS INCREASES BORDER GUARDS; NEW SECURITY IS PART OF AN OVERALL IMMIGRATION PLAN

A BATTLE AGAINST ILLEGAL WORKERS, WITH AN UNLIKELY DRIVING FORCEA BATTLE AGAINST ILLEGAL WORKERS, WITH AN UNLIKELY DRIVING FORCE

POLICE ACROSS U.S. DON'T CHECK IMMIGRANT STATUS DURING STOPSPOLICE ACROSS U.S. DON'T CHECK IMMIGRANT STATUS DURING STOPS

BOOK REVIEW: EXPLORING IMMIGRANT SMUGGLING TRAGEDYBOOK REVIEW: EXPLORING IMMIGRANT SMUGGLING TRAGEDY

IMMIGRATION MAY BE MAJOR ISSUE IN 2008 ELECTION EUNICE MOSCOSOIMMIGRATION MAY BE MAJOR ISSUE IN 2008 ELECTION EUNICE MOSCOSO

BULLDOGS SET PACE IN NCAASBULLDOGS SET PACE IN NCAAS

TEXAN PLANS TO BRING MINUTEMEN PATROLS TO MEXICAN BORDERTEXAN PLANS TO BRING MINUTEMEN PATROLS TO MEXICAN BORDER

GEORGIA TO BATTLE JACKETS FOR TITLEGEORGIA TO BATTLE JACKETS FOR TITLE

SOME SKILLED FOREIGNERS FIND JOBS SCARCE IN CANADASOME SKILLED FOREIGNERS FIND JOBS SCARCE IN CANADA

AT VATICAN'S DOORSTEP, A CONTEST FOR IMMIGRANT SOULSAT VATICAN'S DOORSTEP, A CONTEST FOR IMMIGRANT SOULS

BABY SURVIVES AGAINST ALL ODDSBABY SURVIVES AGAINST ALL ODDS

IDENTITY CRISIS: SOCIAL SECURITY NUMBERS FOR RENTIDENTITY CRISIS: SOCIAL SECURITY NUMBERS FOR RENT

NATION PONDERS IMMIGRANT WORKER PARADOXNATION PONDERS IMMIGRANT WORKER PARADOX

WEB CLASSES FROM MEXICO HELP MIGRANTSWEB CLASSES FROM MEXICO HELP MIGRANTS

NUMBER OF NON-MEXICAN ALIENS CROSSING SOUTHERN BORDER SKYROCKETINGNUMBER OF NON-MEXICAN ALIENS CROSSING SOUTHERN BORDER SKYROCKETING

IMMIGRATION OFFICIALS SEEK EXPANSION OF PROGRAM THAT ALLOWS BORDER AGENTS TO QUICKLY DEPORT ILLEGAL IMMIGRANTSIMMIGRATION OFFICIALS SEEK EXPANSION OF PROGRAM THAT ALLOWS BORDER AGENTS TO QUICKLY DEPORT ILLEGAL IMMIGRANTS

LAZARUS AT LARGE COLUMN HEALTH CARE A DRAG ON U.S. BUSINESSLAZARUS AT LARGE COLUMN HEALTH CARE A DRAG ON U.S. BUSINESS

MOST ILLEGAL ALIENS FREED ON BAIL, OWN RECOGNIZANCEMOST ILLEGAL ALIENS FREED ON BAIL, OWN RECOGNIZANCE

DELAY SAYS BUSH PROMISES BETTER EFFORT ON IMMIGRATION LAWDELAY SAYS BUSH PROMISES BETTER EFFORT ON IMMIGRATION LAW

BUSH-IMMIGRATION-HNSBUSH-IMMIGRATION-HNS

GROWTH RATE OF HISPANIC POPULATION IS RISING, CENSUS BUREAU SAYSGROWTH RATE OF HISPANIC POPULATION IS RISING, CENSUS BUREAU SAYS

REPORT DESCRIBES IMMIGRANTS AS YOUNGER, MORE DIVERSEREPORT DESCRIBES IMMIGRANTS AS YOUNGER, MORE DIVERSE

SHARED LANGUAGE (FOR USESHARED LANGUAGE (FOR USE

DIPLOMAT: MIGRANT BILL NEEDEDDIPLOMAT: MIGRANT BILL NEEDED

IMMIGRATION REFORM AT TOP OF MANY AGENDAS; SIMILAR PROPOSALS BY BUSH, SEN. CORNYN TO TACKLE GUEST WORKERS, BORDER SECURITYIMMIGRATION REFORM AT TOP OF MANY AGENDAS; SIMILAR PROPOSALS BY BUSH, SEN. CORNYN TO TACKLE GUEST WORKERS, BORDER SECURITY

SOUTH TEXAS COUNTY OVERWHELMED BY ILLEGAL IMMIGRANTSSOUTH TEXAS COUNTY OVERWHELMED BY ILLEGAL IMMIGRANTS

STUDY TRACKS SURGE IN ILLEGAL IMMIGRATION FROM MEXICOSTUDY TRACKS SURGE IN ILLEGAL IMMIGRATION FROM MEXICO

NO WORRIES AT PINEHURST FOR 'EL NINO'NO WORRIES AT PINEHURST FOR 'EL NINO'

ONE IN 11 MEXICAN NATIVES IN U.S., HALF ILLEGALONE IN 11 MEXICAN NATIVES IN U.S., HALF ILLEGAL

LOW-PROFILE KENTUCKY TOBACCO MAN BUYS UP TEXAS RANCH LANDLOW-PROFILE KENTUCKY TOBACCO MAN BUYS UP TEXAS RANCH LAND

BOOK REVIEW: CREATING A NEW AMERICANISMOBOOK REVIEW: CREATING A NEW AMERICANISMO

CORNYN-IMMIGRATION-HNSCORNYN-IMMIGRATION-HNS

LAWMAKER SAYS ILLEGAL IMMIGRANTS SHOULDN'T COUNT IN THE CENSUSLAWMAKER SAYS ILLEGAL IMMIGRANTS SHOULDN'T COUNT IN THE CENSUS

GEORGIA STATE LOOKS AT FOOTBALLGEORGIA STATE LOOKS AT FOOTBALL

GARCIA HAS ALL THE SHOTS BUT NOT A MAJOR TITLEGARCIA HAS ALL THE SHOTS BUT NOT A MAJOR TITLE

GUARDSMAN KILLED IN AFGHANISTAN BURIEDGUARDSMAN KILLED IN AFGHANISTAN BURIED

TWO IMMIGRATION PLANS TAKE SHAPE IN SENATETWO IMMIGRATION PLANS TAKE SHAPE IN SENATE

UP TO 64 LABORERS LIVED IN A SMALL HOUSE, AUTHORITIES SAYUP TO 64 LABORERS LIVED IN A SMALL HOUSE, AUTHORITIES SAY

THE VALUE OF IMMIGRANTSTHE VALUE OF IMMIGRANTS

FEDS FAIL TO GO AFTER COMPANIES HIRING ILLEGAL IMMIGRANTSFEDS FAIL TO GO AFTER COMPANIES HIRING ILLEGAL IMMIGRANTS

MINUTEMAN GROUP MAKES PLANS FOR TEXAS PATROLMINUTEMAN GROUP MAKES PLANS FOR TEXAS PATROL

GEORGIA LAGS BEHIND IN LOCAL EMERGENCY PLANNING GROUPSGEORGIA LAGS BEHIND IN LOCAL EMERGENCY PLANNING GROUPS

EDITORIAL: SHAM SANCTIONSEDITORIAL: SHAM SANCTIONS

ON LONG ISLAND, A RAID STIRS DISPUTE OVER INFLUX OF IMMIGRANTSON LONG ISLAND, A RAID STIRS DISPUTE OVER INFLUX OF IMMIGRANTS

HISPANIC POLITICAL POWER LAGS BEHIND RECORD GROWTH , STUDY SAYSHISPANIC POLITICAL POWER LAGS BEHIND RECORD GROWTH , STUDY SAYS

LEGISLATION TO LICENSE UNDOCUMENTED IMMIGRANTS MOVES FORWARDLEGISLATION TO LICENSE UNDOCUMENTED IMMIGRANTS MOVES FORWARD

BUSH ADMINISTRATION BORDER SURVEY NOT RELEASEDBUSH ADMINISTRATION BORDER SURVEY NOT RELEASED

MEXICO TO LET MIGRANTS VOTE BY MAILMEXICO TO LET MIGRANTS VOTE BY MAIL

LAWMAKERS IN MEXICO APPROVE ABSENTEE VOTING FOR MIGRANTSLAWMAKERS IN MEXICO APPROVE ABSENTEE VOTING FOR MIGRANTS

GARCIA: TOO GOOD TO BE TRUE?GARCIA: TOO GOOD TO BE TRUE?

BUSH'S STAND ON IMMIGRATION RILES SOME OF THE PARTY'S BASEBUSH'S STAND ON IMMIGRATION RILES SOME OF THE PARTY'S BASE

BRAZILIANS STREAMING INTO U.S. THROUGH MEXICAN BORDERBRAZILIANS STREAMING INTO U.S. THROUGH MEXICAN BORDER

BUSH ADMINISTRATION SAYS MEXICAN STAMPS ARE INAPPROPRIATEBUSH ADMINISTRATION SAYS MEXICAN STAMPS ARE INAPPROPRIATE

TECH ASSISTANT TAPPED FOR GEORGIA STATE ADTECH ASSISTANT TAPPED FOR GEORGIA STATE AD

LONG ISLAND OFFICIALS TRY A DIFFERENT APPROACH TO IMMIGRANT CRACKDOWNLONG ISLAND OFFICIALS TRY A DIFFERENT APPROACH TO IMMIGRANT CRACKDOWN

Figure 6.11: Visualization of a single article node and all of its neighboring article nodes.
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explore it would exceed the abilities of modern document viewers. Instead, we provide
an online, zoomable version based upon a high-resolution (540 megapixel) rendering,
available at http://zoom.it/jOKV. Even at this level of detail, only 1% of the edges
are displayed; otherwise they become visually indistinct. As in Figure 6.11, each node
represents an article and is sized according to its weight and overlaid with its headline.
The horizontal position corresponds to time, ranging from January 2005 (on the left) to
June 2005 (on the right). The vertical positions are determined by similarity to a set of
threads sampled from the k-SDPP, which are rendered in color.

Baselines

We will compare the k-SDPP model to two natural baselines.

k-means baseline. A simple method for this task is to split each six-month period of
articles into R equal-size time slices, and then apply k-means clustering to each slice,
using cosine similarity at the clustering metric. We can then select the most central
article from each cluster to form the basis of a set of threads. The k articles chosen from
time slice r are matched one-to-one with those from slice r−1 by computing the pairing
that maximizes the average cosine similarity of the pairs—that is, the coherence of the
threads. Repeating this process for all r yields a set of k threads of length R, where no
two threads will contain the same article. However, because clustering is performed
independently for each time slice, it is likely that the threads will sometimes exhibit
discontinuities when the articles chosen at successive time slices do not naturally align.

DTM baseline. A natural extension, then, is the dynamic topic model (DTM) of Blei
and Lafferty (2006), which explicitly attempts to find topics that are smooth through
time. We use publicly available code4 to fit DTMs with the number of topics set to k and
with the data split into R equal time slices. We set the hyperparameters to maximize
the cosine similarity metric (see Section 6.6.4) on our development set. We then choose,
for each topic at each time step, the document with the highest per-word probability of
being generated by that topic. Documents from the same topic form a single thread.

Figure 6.12 shows some of the threads sampled randomly from the k-SDPP for our
development set, and Figure 6.13 shows the same for threads produced by the DTM

4http://code.google.com/p/princeton-statistical-learning/

http://zoom.it/jOKV
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Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

pope vatican church parkinson 

israel palestinian iraqi israeli gaza abbas baghdad 

owen nominees senate democrats judicial filibusters 

social tax security democrats rove accounts 

iraq iraqi killed baghdad arab marines deaths forces 

Thread: pope vatican church parkinson

Feb 24: Parkinson’s Disease Increases Risks to Pope
Feb 26: Pope’s Health Raises Questions About His Ability to Lead
Mar 13: Pope Returns Home After 18 Days at Hospital
Apr 01: Pope’s Condition Worsens as World Prepares for End of Papacy
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers
Apr 18: Europeans Fast Falling Away from Church
Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name

Figure 6.12: A set of five news threads randomly sampled from a k-SDPP for the first
half of 2005. Above, the threads are shown on a timeline with the most salient words
superimposed; below, the dates and headlines from a single thread are listed.

baseline. An obvious distinction is that topic model threads always span nearly the entire
time period, selecting one article per time slice as required by the form of the model,
while the DPP can select threads covering only the relevant span. Furthermore, the
headlines in the figures suggest that the k-SDPP produces more tightly focused, narrative
threads due to its use of the data graph, while the DTM threads, though topically related,
tend not to describe a single continuous news story. This distinction, which results from
the fact that topic models are not designed with threading in mind, and so do not take
advantage of the explicit relation information given by the graph, means that k-SDPP
threads often form a significantly more coherent representation of the news collection.
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Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

cancer heart breast women disease aspirin risk study 

palestinian israel baghdad palestinians sunni korea gaza israeli 

social security accounts retirement benefits tax workers 401 payroll 

mets rangers dodgers delgado martinez astacio angels mientkiewicz 

hotel kitchen casa inches post shade monica closet 

Thread: cancer heart breast women disease aspirin risk study

Jan 11: Study Backs Meat, Colon Tumor Link
Feb 07: Patients—and Many Doctors—Still Don’t Know How Often

Women Get Heart Disease
Mar 07: Aspirin Therapy Benefits Women, but Not in the Way It Aids Men
Mar 16: Study Shows Radiation Therapy Doesn’t Increase Heart Disease

Risk for Breast Cancer Patients
Apr 11: Personal Health: Women Struggle for Parity of the Heart
May 16: Black Women More Likely to Die from Breast Cancer
May 24: Studies Bolster Diet, Exercise for Breast Cancer Patients
Jun 21: Another Reason Fish is Good for You

Figure 6.13: A set of five news threads generated by the dynamic topic model for the first
half of 2005. Above, the threads are shown on a timeline with the most salient words
superimposed; below, the dates and headlines from a single thread are listed.
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ROUGE-1 ROUGE-2 ROUGE-SU4

System Cos-sim F Prec/Rec F Prec/Rec F Prec/Rec
k-means 29.9 16.5 17.3/15.8 0.695 0.73/0.67 3.76 3.94/3.60
DTM 27.0 14.7 15.5/14.0 0.750 0.81/0.70 3.44 3.63/3.28
k-SDPP 33.2 17.2 17.7/16.7 0.892 0.92/0.87 3.98 4.11/3.87

Table 6.1: Similarity of automatically generated timelines to human summaries. Bold
entries are significantly higher than others in the column at 99% confidence, verified
using bootstrapping.

Comparison to human summaries

We provide a quantitative evaluation of the threads generated by our baselines and sam-
pled from the k-SDPP by comparing them to a set of human-generated news summaries.
The human summaries are not threaded; they are flat, approximately daily news sum-
maries found in the Agence France-Presse portion of the Gigaword corpus, distinguished
by their “multi” type tag. The summaries generally cover world news, which is only a
subset of the contents of our dataset. Nonetheless, they allow us to provide an extrinsic
evaluation for this novel task without generating gold standard timelines manually,
which is a difficult task given the size of the corpus. We compute four metrics:

• Cosine similarity. We concatenate the human summaries over each six-month
period to obtain a target tf-idf vector, concatenate the set of threads to be evaluated
to obtain a predicted tf-idf vector, and then compute the cosine similarity (in
percent) between the target and predicted vectors. All hyperparameters are chosen
to optimize this metric on a validation set.

• ROUGE-1, 2, and SU4. As described in Section 4.2.1, ROUGE is an automatic
evaluation metric for text summarization based on n-gram overlap statistics (Lin,
2004). We report three standard variants.

Table 6.1 shows the results of these comparisons, averaged over all six half-year
intervals. Under each metric, the k-SDPP produces threads that more closely resemble
human summaries.

Mechanical Turk evaluation

An important distinction between the baselines and the k-SDPP is that the former are
topic-oriented, choosing articles that relate to broad subject areas, while the k-SDPP
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System Rating Interlopers
k-means 2.73 0.71
DTM 3.19 1.10
k-SDPP 3.31 1.15

Table 6.2: Rating: average coherence score from 1 (worst) to 5 (best). Interlopers: average
number of interloper articles identified (out of 2). Bold entries are significantly higher
with 95% confidence.

approach is story-oriented, chaining together articles with direct individual relationships.
An example of this distinction can be seen in Figures 6.12 and 6.13.

To obtain a large-scale evaluation of this type of thread coherence, we employ Me-
chanical Turk, on online marketplace for inexpensively and efficiently completing tasks
requiring human judgment. We asked Turkers to read the headlines and first few sen-
tences of each article in a timeline and then rate the overall narrative coherence of the
timeline on a scale of 1 (“the articles are totally unrelated”) to 5 (“the articles tell a single
clear story”). Five separate Turkers rated each timeline. The average ratings are shown
in the left column of Table 6.2; the k-SDPP timelines are rated as significantly more
coherent, while k-means does poorly since it has no way to ensure that clusters are similar
between time slices.

In addition, we asked Turkers to evaluate threads implicitly by performing a second
task. (This also had the side benefit of ensuring that Turkers were engaged in the rating
task and did not enter random decisions.) We displayed timelines into which two
additional “interloper” articles selected at random had been inserted, and asked users
to remove the two articles that they thought should be removed to improve the flow of
the timeline. A screenshot of the task is provided in Figure 6.14. Intuitively, the true
interlopers should be selected more often when the original timeline is coherent. The
average number of interloper articles correctly identified is shown in the right column
of Table 6.2.

Runtime

Finally, assuming that tf-idf and feature values have been computed in advance (this
process requires approximately 160 seconds), we report in Table 6.3 the time required to
produce a set of threads on the development set. This measurement includes clustering
for the k-means baseline, model fitting for the DTM baseline, and random projections,
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Figure 6.14: A screenshot of the Mechanical Turk task presented to annotators.

System Runtime (s)
k-means 625.63
DTM 19,433.80
k-SDPP 252.38

Table 6.3: Running time for the tested methods.

computation of the covariance matrix, and sampling for the k-SDPP. The tests were run
on a machine with eight Intel Xeon E5450 cores and 32G of memory. Thanks to the
use of random projections, the k-SDPP is not only the most faithful to human news
summaries, but also the fastest by a large margin.



7
Conclusion

We have presented a variety of intuitions, algorithms, extensions, and theoretical results
for determinantal point processes, with the goal of making these models practical for
real-world modeling and learning. We gave a novel decomposition that emphasizes a
fundamental tradeoff between sets of high-quality items and sets that are diverse, and
discussed how the two models interact. We introduced a dual representation for DPPs
that dramatically speeds inference for large data sets, and proved that random projections
can be used to reduce the computational demands of inference even further without
sacrificing model fidelity. We showed that the quality model can be learned efficiently
for conditional DPPs, and applied the resulting techniques to perform multi-document
summarization. We also gave a precise characterization of identifiability for the diversity
model, and conjectured that at least one intuitive formulation leads to an NP-hard
learning problem. We proposed conditioning a DPP on its cardinality, leading to
k-DPPs, which offer increased expressiveness and control. We then showed how these
advantages can be used to improve the fraction of users satisfied by image search results.
We considered DPPs defined over exponentially-large structured sets, and proposed a

164
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novel factorization that makes inference in this setting tractable through the use of
second-order message passing. We then validated the performance of the structured
model on a multiple pose identification task, improving over heuristic techniques for
diversification. Finally, we applied these methods to perform complex threading of two
large document corpora, extracting diverse research threads from academic citation data
and automatically building news timelines from the Gigaword corpus.

7.1 Future work

Before concluding, we briefly suggest some avenues for future work.

Theoretical results. While much is known about DPPs, some open theoretical ques-
tions remain, including the concavity of entropy and the computation of squared sums
of determinants, outlined in Chapter 2, and learning of the diversity model, discussed
in Chapter 4. Answering these questions, though seemingly difficult, would provide
valuable insight into the mathematics of DPPs, as well as, if the results fall on the right
side, offering new tools with which to build practical algorithms. A number of other
open theoretical questions, many of which emphasize the more general mathematics of
DPPs, are offered by Lyons (2003).

Combining DPPs with other models. In some sense the strengths of DPPs are com-
plementary to those of graphical models, since DPPs model global, negative interactions,
while graphical models are best at localized, positive interactions. It would be appealing,
therefore, to somehow bring these strengths together if we could also maintain efficient
inference. Naively, we can add a global DPP factor to a graphical model; however, this
results in a loopy graph. Moreover, if we attempt to use approximate techniques like
loopy belief propagation, computing the appropriate messages from the DPP clique
requires marginalizing over all exponentially many possible orderings of a given subset.
Thus, many algorithmic challenges remain. However, if they can be made to work, such
models would potentially offer a wide range of applications, including those featuring
both positive and negative interactions or diverse but ordered subsets.

New applications. Finally, there has been little work in general exploring applications
that rely heavily on diverse subsets or negative interactions, due in part to the fact that
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traditional models have not been effective for such tasks. Nonetheless, we believe that
there exist many other settings where DPPs could be successfully applied. For instance,
topic models are sometimes plagued by a tendency for the topics to become too similar
to one another; introducing DPPs might allow this problem to be solved in a tractable
way. Tracking applications, which we studied only synthetically, often require heuristics
for suppressing multiple trajectories for the same object; a DPPmight be able to play this
role in a probabilistically well-motivated manner. Likewise, large datasets from social
networks and other digital sources potentially contain huge amounts of information
that needs to be summarized automatically in order for users to glean useful insights;
DPPs offer an elegant framework for this kind of task. Finally, we believe that there are
a wide variety of interesting applications that have not previously been studied but, as
with our work on graph threading, can be enabled by DPPs.
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